Dynamic beam-steering in wide angle range based on tunable graphene metasurface

被引:4
作者
Li Xiao-Bing [1 ]
Lu Wei-Bing [1 ,2 ]
Liu Zhen-Guo [1 ]
Chen Hao [1 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, State Key Lab Millimetre Waves, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Synerget Innovat Ctr Wireless Commun Technol, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
metasurface; graphene; beam steering; tunable; LIGHT; REFLECTION; WAVES; THIN;
D O I
10.7498/aps.67.20180592
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Metasurfaces, the two-dimensional counterparts of metamaterials composed of subwavelength building blocks, can be used to control the amplitude, phase, and polarization of the scattered wave in a simple but effective way and thus have a wide range of applications such as lenses, holograms, and beam steering. Among these applications, metasurface-based beam steering is of great importance for antenna engineering in communication systems, because of its low loss and easy manufacture. The capability of beam steering is mainly controlled by the phase profile which is determined by the phase shift applied to the wave scattered by each of unit cells that constitute the metasurface. It should be noted that the required phase profile achieved by distributing the unit cells with different phase responses can operate well only at a certain frequency. The guidance in determining the required phase profile to steer the beam into a certain direction is the generalized Snell's law. According to this law, the reflection angle of the wave reflected by the metasurface interface depends on the linear phase gradient along the metasurface. Therefore, by forming different linear phase gradients covering the whole phase shift 2 pi periodically, one can steer the reflected waves to different angles. However, the obtained reflection angles are limited because the phase gradient of a metasurface is limited by the unit cell size, which cannot be infinitely small. Recently, a new pattern shift theory based on the convolution theorem has been proposed to realize wide angle range steering, enabling flexible and continuous manipulation of reflection angle. Because the electric field distribution and the scattering pattern in the far-field region are a Fourier transform pair, we can pattern the electric field of the metasurface to control the scattered waves of far field. Specifically, the multiplication of an electric distribution by a gradient phase sequence leads to a deviation of the scattering pattern from its original direction to a certain extent in the angular coordinate. However, we have not considered the tunability of metasurfaces so far, which is required in applications. The ways to reach tunability in metasurface include diode switches, micro-electro-mechanical system, and the use of tunable materials such as graphene. Graphene, an atomically thin layer of carbon atoms arranged in a honeycomb lattice, has aroused the enormous interest due to its outstanding mechanical, thermal, and electrical properties. With the capability of being electrically tunable, graphene has manifested itself as a promising candidate for designing the tunable metasurfaces. Although the reflection angle can be changed by electrically reconfiguring the graphene Fermi level distribution of the metasurface, the steering angle is still limited. In this paper, we propose and design a tunable graphene metasurface with the capability of dynamically steering the reflection angle in a wide range, which is achieved based on the new pattern shift theory. The theoretical results and the numerically simulated results both show that the reflection angle can be steered from 5 degrees to 70 degrees with an interval less than 10 degrees, implying the promising potential in the design of tunable antenna.
引用
收藏
页数:7
相关论文
共 28 条
  • [1] Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities
    Aieta, Francesco
    Genevet, Patrice
    Yu, Nanfang
    Kats, Mikhail A.
    Gaburro, Zeno
    Capasso, Federico
    [J]. NANO LETTERS, 2012, 12 (03) : 1702 - 1706
  • [2] Graphene-enabled electrically switchable radar-absorbing surfaces
    Balci, Osman
    Polat, Emre O.
    Kakenov, Nurbek
    Kocabas, Coskun
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [3] Ultrafast collinear scattering and carrier multiplication in graphene
    Brida, D.
    Tomadin, A.
    Manzoni, C.
    Kim, Y. J.
    Lombardo, A.
    Milana, S.
    Nair, R. R.
    Novoselov, K. S.
    Ferrari, A. C.
    Cerullo, G.
    Polini, M.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [4] Controlling inelastic light scattering quantum pathways in graphene
    Chen, Chi-Fan
    Park, Cheol-Hwan
    Boudouris, Bryan W.
    Horng, Jason
    Geng, Baisong
    Girit, Caglar
    Zettl, Alex
    Crommie, Michael F.
    Segalman, Rachel A.
    Louie, Steven G.
    Wang, Feng
    [J]. NATURE, 2011, 471 (7340) : 617 - 620
  • [5] Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities
    Efetov, Dmitri K.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (25)
  • [6] Optical far-infrared properties of a graphene monolayer and multilayer
    Falkovsky, L. A.
    Pershoguba, S. S.
    [J]. PHYSICAL REVIEW B, 2007, 76 (15)
  • [7] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [8] Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/nphoton.2012.262, 10.1038/NPHOTON.2012.262]
  • [9] An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials
    Holloway, Christopher L.
    Kuester, Edward F.
    Gordon, Joshua A.
    O'Hara, John
    Booth, Jim
    Smith, David R.
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (02) : 10 - 35
  • [10] Out-of-plane focusing and manipulation of terahertz beams based on a silicon/copper grating covered by monolayer graphene
    Jiang, Jianli
    Zhang, Xiao
    Zhang, Wei
    Liang, Shuang
    Wu, Hong
    Jiang, Liyong
    Li, Xiangyin
    [J]. OPTICS EXPRESS, 2017, 25 (14): : 16867 - 16878