WALL CONDITIONING IN LHD

被引:6
作者
Masuzaki, S. [1 ]
Ashikawa, N. [1 ]
Nishimura, K. [1 ]
Tokitani, M. [1 ]
Hino, T. [2 ]
Yamauchi, Y. [2 ]
Nobuta, Y. [2 ]
Yoshida, N. [3 ]
Miyamoto, M. [4 ]
Sagara, A. [1 ]
Noda, N. [1 ]
Yamada, H. [1 ]
Komori, A. [1 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[2] Hokkaido Univ, Sapporo, Hokkaido 0608628, Japan
[3] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
[4] Shimane Univ, Matsue, Shimane 6908504, Japan
关键词
LHD; wall conditioning; plasma-wall interaction; LARGE HELICAL DEVICE; BORONIZED WALL; DIVERTOR;
D O I
10.13182/FST10-A10816
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Wall conditioning in the Large Helical Device (LHD) has been conducted successively since the first experimental campaign in 1998. The effects of wall conditioning on the vacuum condition, the plasma performance, and the surface modification of the plasma-facing components have been analyzed by both macroscopic and microscopic observations such as residual gas analysis and transmission electron microscope observation, respectively. The main tools for the conditioning are mild baking (95 degrees C); glow discharges with hydrogen, helium, and neon; and wall coating with titanium and boron. Though the baking temperature is lower than in other fusion devices, it reduces impurity gases well just after the start of vacuum pumping, and it reduces retained hydrogen in plasma-facing components during the experimental campaign. Helium glow discharge was revealed to cause heavy damage on the surfaces of metallic components and the contamination of the hydrogen discharges with helium released from wall. Neon glow discharge has been conducted since it causes much less damage and hastens the conditioning of the wall. Boronization is very effective to reduce oxygen impurity in plasma, and the effects last for the whole experimental campaign in LHD.
引用
收藏
页码:297 / 304
页数:8
相关论文
共 25 条
[1]   Comparison of boronized wall in LHD and JT-60U [J].
Ashikawa, N. ;
Kizu, K. ;
Yagyu, J. ;
Nakahata, T. ;
Nobuta, Y. ;
Nishimura, K. ;
Yoshikawa, A. ;
Ishimoto, Y. ;
Oya, Y. ;
Okuno, K. ;
Miya, N. ;
Hino, T. ;
Masuzaki, S. ;
Sagara, A. ;
Ohyabu, N. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) :1352-1357
[2]   Ion cyclotron conditioning with strong magnetic field in LHD [J].
Ashikawa, N. ;
Masuzaki, S. ;
Nishimura, K. ;
Seki, T. ;
Saito, K. ;
Kumazawa, R. ;
Mutoh, T. ;
Sagara, A. ;
Ohyabu, N. ;
Hu, J. S. ;
Zhao, Y. .
FUSION ENGINEERING AND DESIGN, 2006, 81 (23-24) :2831-2836
[3]   Review of radio frequency conditioning discharges with magnetic fields in superconducting fusion reactors [J].
de la Cal, E ;
Gauthier, E .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (02) :197-218
[4]   Analysis of radiative disruptions in RF-heated Tore Supra plasmas using infrared imaging [J].
Ekedahl, A. ;
Bucalossi, J. ;
Corre, Y. ;
Delchambre, E. ;
Dunand, G. ;
Meyer, O. ;
Mitteau, R. ;
Monier-Garbet, P. ;
Pegourie, B. ;
Rimini, F. G. ;
Saint-Laurent, F. ;
Schwob, J. L. ;
Tsitrone, E. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :806-809
[5]   Plasma wall interaction study in the large helical device [J].
Hino, I. ;
Nobuta, Y. ;
Ashikawa, N. ;
Nishimura, K. ;
Masuzaki, S. ;
Sagara, A. ;
Hirohata, Y. ;
Yamauchi, Y. ;
Noda, N. ;
Ohyabu, N. ;
Komori, A. ;
Motojima, O. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) :1621-1626
[6]   Analysis for hydrogen particle balance of plasma-wall system in the large helical device [J].
Kobayashi, M ;
Miyazawa, J ;
Masuzaki, S ;
Igitkhanov, Y ;
Sakamoto, R ;
Ashikawa, N ;
Morisaki, T ;
Ohyabu, N ;
Yamada, H ;
Funaba, H ;
Komori, A ;
Motojima, O .
JOURNAL OF NUCLEAR MATERIALS, 2006, 350 (01) :40-46
[7]   Edge plasma control by local island divertor in LHD [J].
Komori, A ;
Morisaki, T ;
Masuzaki, S ;
Kobayashi, M ;
Feng, Y ;
Shoji, M ;
Ohyabu, N ;
Ida, K ;
Tanaka, K ;
Kawahata, K ;
Narihara, K ;
Morita, S ;
Peterson, BJ ;
Sakamoto, R ;
Sakakibara, S ;
Yamada, H ;
Ikeda, K ;
Kaneko, O ;
Kubo, S ;
Miyazawa, J ;
Nagaoka, K ;
Nakanishi, H ;
Ohkubo, K ;
Oka, Y ;
Osakabe, M ;
Reiter, D ;
Sardei, F ;
Shimozuma, T ;
Takeiri, Y ;
Tsumori, K ;
Watababe, KY ;
Yamada, I ;
Yoshimura, Y ;
Yoshinuma, M ;
Motojima, O .
NUCLEAR FUSION, 2005, 45 (08) :837-842
[8]   Recent progress in understanding the behavior of dust in fusion devices [J].
Krasheninnikov, S. I. ;
Pigarov, A. Yu ;
Smirnov, R. D. ;
Rosenberg, M. ;
Tanaka, Y. ;
Benson, D. J. ;
Soboleva, T. K. ;
Rognlien, T. D. ;
Mendis, D. A. ;
Bray, B. D. ;
Rudakov, D. L. ;
Yu, J. H. ;
West, W. P. ;
Roquemore, A. L. ;
Skinner, C. H. ;
Terry, J. L. ;
Lipschultz, B. ;
Bader, A. ;
Granetz, R. S. ;
Pitcher, C. S. ;
Ohno, N. ;
Takamura, S. ;
Masuzaki, S. ;
Ashikawa, N. ;
Shiratani, M. ;
Tokitani, M. ;
Kumazawa, R. ;
Asakura, N. ;
Nakano, T. ;
Litnovsky, A. M. ;
Maqueda, R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
[9]   Developments and high heat flux tests of divertor components for LHD [J].
Kubota, Y ;
Noda, N ;
Sagara, A ;
Sakamoto, R ;
Motojima, O ;
Fujita, I ;
Hino, T ;
Yamashina, T ;
Tokunaga, K ;
Yoshida, N .
FUSION ENGINEERING AND DESIGN, 1998, 39-40 :247-252
[10]  
MASUMAKI S, 2006, P 21 FUS EN C CHENGD