Fundamental solutions for variable density two-dimensional elastodynamic problems

被引:18
作者
Manolis, GD [1 ]
Shaw, RP
机构
[1] Aristotelian Univ Salonika, Dept Civil Engn, GR-54006 Salonika, Greece
[2] SUNY Buffalo, Dept Civil Engn, Buffalo, NY 14260 USA
关键词
conformal mapping; elastodynamics; fundamental solutions; heterogeneous media; wave motions;
D O I
10.1016/S0955-7997(00)00056-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fundamental solutions in the form of free-space Green's functions are developed for a class of two-dimensional, variable density elastodynamic problems. These fundamental solutions are evaluated by means of a coordinate transformation based on conformal mapping in conjunction with wave decomposition, which allows for both vertical and lateral heterogeneities, and can be used within the context of a boundary integral equation formulation analogous to that originally proposed by Cruse and Rizzo (J Math Anal Appl 22 (1968) 244). Finally, a numerical example serves to illustrate the methodology developed herein. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:739 / 750
页数:12
相关论文
共 49 条
[2]  
Achenbach J., 1973, WAVE PROPAGATION ELA
[3]  
ALVERSON RC, 1963, B SEISMOL SOC AM, V53, P1023
[4]  
[Anonymous], 1980, TABLES INTEGRALS SER
[5]  
APSEL RJ, 1983, B SEISMOL SOC AM, V73, P931
[6]  
Banaugh R. P., 1963, J APPL MECH, V30, P589, DOI DOI 10.1115/1.3636624
[8]  
Brekhovskikh L.M., 1980, Waves in Layered Media, V2nd ed.
[9]  
Cagniard L., 1939, REFLECTION REFRACTIO
[10]  
Churchill R. V., 1974, COMPLEX VARIABLES AP