Modified α-Bernstein-Durrmeyer-Type Operators

被引:0
作者
Agrawal, P. N. [1 ]
Kajla, Arun [2 ]
Singh, Sompal [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Cent Univ Haryana, Dept Math, Jant 123031, Haryana, India
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2021年 / 45卷 / 06期
关键词
Peetre's K-functional; Ditzian-Totik modulus of smoothness; Voronovskaja-type theorem; Gruss Voronovskaja-type theorem; Functions of bounded variation; APPROXIMATION PROPERTIES; POLYNOMIALS; CONVERGENCE; DERIVATIVES; THEOREM;
D O I
10.1007/s40995-021-01197-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we construct a Durrmeyer variant of the modified alpha-Bernstein-type operators introduced by Kajla and Acar (Ann Funct Anal 10(4):570-582, 2019), for alpha is an element of[0,1]. We investigate the degree of approximation via the approach of Peetre's K-functional and the Lipschitz-type maximal function. The quantitative Voronovskaja- and Gruss Voronovskaja-type theorems are discussed. Further, we determine the rate of convergence by the above operators for the functions with derivatives of bounded variation.
引用
收藏
页码:2049 / 2061
页数:13
相关论文
共 50 条
[31]   Bezier variant of genuine-Durrmeyer type operators based on Polya distribution [J].
Neer, Trapti ;
Acu, Ana Maria ;
Agrawal, P. N. .
CARPATHIAN JOURNAL OF MATHEMATICS, 2017, 33 (01) :73-86
[32]   a-Bernstein-Integral Type Operators [J].
Yadav, Jyoti ;
Mohiuddine, Syed Abdul ;
Kajla, Arun ;
Alotaibi, Abdullah .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
[33]   Modified ρ-Bernstein Operators for Functions of Two Variables [J].
Agrawal, P. N. ;
Kajla, Arun ;
Kumar, Dharmendra .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) :1073-1095
[34]   The multivariate Durrmeyer-sampling type operators in functional spaces [J].
Costarelli, Danilo ;
Piconi, Michele ;
Vinti, Gianluca .
DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 :128-144
[35]   Approximation by a kind of complex modified q-Durrmeyer type operators in compact disks [J].
Ren, Mei-Ying ;
Zeng, Xiao-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[36]   Relations between anisotropic Besov spaces and multivariate Bernstein-Durrmeyer operators [J].
Feng, Guo ;
Feng, Yuan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[37]   Quantitative estimates in uniform and pointwise approximation by Bernstein-Durrmeyer-Choquet operators [J].
Gal, Sorin G. ;
Trifa, Sorin .
CARPATHIAN JOURNAL OF MATHEMATICS, 2017, 33 (01) :49-58
[38]   QUANTITATIVE ESTIMATES FOR A NEW COMPLEX Q-DURRMEYER TYPE OPERATORS ON COMPACT DISKS [J].
Kumar, A. Sathish ;
Agrawal, Purshottam N. ;
Acar, Tuncer .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (01) :191-210
[39]   Szasz-Durrmeyer type operators based on Charlier polynomials [J].
Kajla, Arun ;
Agrawal, P. N. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :1001-1014
[40]   APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS [J].
Yu, Kan ;
Cheng, Wentao ;
Fan, Ligang ;
Zhou, Xiaoling .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02) :547-558