Modified α-Bernstein-Durrmeyer-Type Operators

被引:0
|
作者
Agrawal, P. N. [1 ]
Kajla, Arun [2 ]
Singh, Sompal [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Cent Univ Haryana, Dept Math, Jant 123031, Haryana, India
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2021年 / 45卷 / 06期
关键词
Peetre's K-functional; Ditzian-Totik modulus of smoothness; Voronovskaja-type theorem; Gruss Voronovskaja-type theorem; Functions of bounded variation; APPROXIMATION PROPERTIES; POLYNOMIALS; CONVERGENCE; DERIVATIVES; THEOREM;
D O I
10.1007/s40995-021-01197-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we construct a Durrmeyer variant of the modified alpha-Bernstein-type operators introduced by Kajla and Acar (Ann Funct Anal 10(4):570-582, 2019), for alpha is an element of[0,1]. We investigate the degree of approximation via the approach of Peetre's K-functional and the Lipschitz-type maximal function. The quantitative Voronovskaja- and Gruss Voronovskaja-type theorems are discussed. Further, we determine the rate of convergence by the above operators for the functions with derivatives of bounded variation.
引用
收藏
页码:2049 / 2061
页数:13
相关论文
共 50 条
  • [1] On approximation by Stancu variant of Bernstein-Durrmeyer-type operators in movable compact disks
    Yu, Danshegn
    Pang, Zhaojun
    DEMONSTRATIO MATHEMATICA, 2025, 58 (01)
  • [2] BETTER DEGREE OF APPROXIMATION BY MODIFIED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Agrawal, Purshottam Narain
    Gungor, Sule Yuksel
    Kumar, Abhishek
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (02): : 75 - 92
  • [3] A Genuine Family of Bernstein-Durrmeyer Type Operators Based on Polya Basis Functions
    Neer, Trapti
    Agrawal, P. N.
    FILOMAT, 2017, 31 (09) : 2611 - 2623
  • [4] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [5] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [6] Better Numerical Approximation by λ-Durrmeyer-Bernstein Type Operators
    Radu, Voichita Adriana
    Agrawal, Purshottam Narain
    Singh, Jitendra Kumar
    FILOMAT, 2021, 35 (04) : 1405 - 1419
  • [7] Genuine modified Bernstein-Durrmeyer operators
    Mohiuddine, Syed Abdul
    Acar, Tuncer
    Alghamdi, Mohammed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [8] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [9] Durrmeyer-Type Generalization of μ-Bernstein Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    FILOMAT, 2022, 36 (01) : 349 - 360
  • [10] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358