Metal coordination complexes in nonaqueous redox flow batteries

被引:38
|
作者
Hogue, Ross W. [1 ]
Toghill, Kathryn E. [1 ]
机构
[1] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
Redox flow batteries; Coordination complexes; Transition metal complexes; Nonaqueous electrolytes; Energy storage; SUPPORTING ELECTROLYTES; NEXT-GENERATION; ENERGY-STORAGE; NI FOAM; SOLVENTS; PROGRESS; DESIGN; COBALT; CHALLENGES; CROSSOVER;
D O I
10.1016/j.coelec.2019.08.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ongoing search for new electroactive materials for next-generation redox flow batteries has within the last decade encompassed metal-ligand coordination chemistry. Here, we review the handful of metal coordination complexes proposed as redox flow battery electrolytes. We highlight examples with careful ligand design, driving research towards higher energy density storage materials. Metal coordination complexes designed to be highly soluble not only in the initial redox state but also in all charged states accessed during the battery cycle give particularly impressive performances. Optimisation of flow cell conditions for metal coordination complexes remains largely unexplored, with most complexes screened in nonideal H-cell experiments with little investigation into membrane and electrode materials.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [41] Conformational Control as a Design Strategy to Tune the Redox Behavior of Benzotriazole Negolytes for Nonaqueous Flow Batteries
    Sabhapathy, Palani
    Sengupta, Uddalak
    Munoz, Miguel
    Cagli, Eda
    Figgins, Matthew T.
    Wainright, Jesse
    Powers, David C.
    Gurkan, Burcu
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (13) : 19607 - 19616
  • [42] Metal and Metal Oxide Electrocatalysts for Redox Flow Batteries
    Amini, Kiana
    Gostick, Jeff
    Pritzker, Mark D.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (23)
  • [43] High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries
    Hendriks, Koen H.
    Robinson, Sophia G.
    Braten, Miles N.
    Sevov, Christo S.
    Helms, Brett A.
    Sigman, Matthew S.
    Minteer, Shelley D.
    Sanford, Melanie S.
    ACS CENTRAL SCIENCE, 2018, 4 (02) : 189 - 196
  • [44] Applications of nanocarbons in redox flow batteries
    Zhang, Feng-jie
    Zhang, Hai-tao
    NEW CARBON MATERIALS, 2021, 36 (01) : 82 - 91
  • [45] Extending the Redox Potentials of Metal-Free Anolytes: Towards High Energy Density Redox Flow Batteries
    Chai, Jingchao
    Lashgari, Amir
    Wang, Xiao
    Jiang, Jianbing Jimmy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [46] How Green are Redox Flow Batteries?
    Ebner, Sophie
    Spirk, Stefan
    Stern, Tobias
    Mair-Bauernfeind, Claudia
    CHEMSUSCHEM, 2023, 16 (08)
  • [47] The Chemistry of Redox-Flow Batteries
    Noack, Jens
    Roznyatovskaya, Nataliya
    Herr, Tatjana
    Fischer, Peter
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) : 9775 - 9808
  • [48] Membrane degradation in redox flow batteries
    Lulay, Felix
    Weidlich, Claudia
    Valtiner, Markus
    Pichler, Christian M.
    GREEN CHEMISTRY LETTERS AND REVIEWS, 2023, 16 (01)
  • [49] Electrolytes for vanadium redox flow batteries
    Wu, Xiongwei
    Liu, Jun
    Xiang, Xiaojuan
    Zhang, Jie
    Hu, Junping
    Wu, Yuping
    PURE AND APPLIED CHEMISTRY, 2014, 86 (05) : 661 - 669
  • [50] Computational design of microarchitected porous electrodes for redox flow batteries
    Beck, Victor A.
    Wong, Jonathan J.
    Jekel, Charles F.
    Tortorelli, Daniel A.
    Baker, Sarah E.
    Duoss, Eric B.
    Worsley, Marcus A.
    JOURNAL OF POWER SOURCES, 2021, 512