Metal coordination complexes in nonaqueous redox flow batteries

被引:38
|
作者
Hogue, Ross W. [1 ]
Toghill, Kathryn E. [1 ]
机构
[1] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
Redox flow batteries; Coordination complexes; Transition metal complexes; Nonaqueous electrolytes; Energy storage; SUPPORTING ELECTROLYTES; NEXT-GENERATION; ENERGY-STORAGE; NI FOAM; SOLVENTS; PROGRESS; DESIGN; COBALT; CHALLENGES; CROSSOVER;
D O I
10.1016/j.coelec.2019.08.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ongoing search for new electroactive materials for next-generation redox flow batteries has within the last decade encompassed metal-ligand coordination chemistry. Here, we review the handful of metal coordination complexes proposed as redox flow battery electrolytes. We highlight examples with careful ligand design, driving research towards higher energy density storage materials. Metal coordination complexes designed to be highly soluble not only in the initial redox state but also in all charged states accessed during the battery cycle give particularly impressive performances. Optimisation of flow cell conditions for metal coordination complexes remains largely unexplored, with most complexes screened in nonideal H-cell experiments with little investigation into membrane and electrode materials.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [21] Ambient Temperature Sodium Polysulfide Catholyte for Nonaqueous Redox Flow Batteries
    Self, Ethan C.
    Tyler, Jameson L.
    Nanda, Jagjit
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [22] Organic Functionalization of Polyoxovanadate-Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries
    VanGelder, Lauren E.
    Petel, Brittney E.
    Nachtigall, Olaf
    Martinez, Gabriel
    Brennessel, William W.
    Matson, Ellen M.
    CHEMSUSCHEM, 2018, 11 (23) : 4139 - 4149
  • [23] Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries
    Geysens, Pieter
    Li, Yun
    Vankelecom, Ivo
    Fransaer, Jan
    Binnemans, Koen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (09): : 3832 - 3843
  • [24] Novel Ethylene Glycol Substituted Benzoxadiazole and Benzothiadiazole as Anolytes for Nonaqueous Organic Redox Flow Batteries
    Makarova, Maria, V
    Akkuratov, Alexander, V
    Sideltsev, Maxim E.
    Stevenson, Keith J.
    Romadina, Elena, I
    CHEMELECTROCHEM, 2022, 9 (15):
  • [25] Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries
    Zhang, Jingling
    Corman, R. E.
    Schuh, Jonathon K.
    Ewoldt, Randy H.
    Shkrob, Ilya A.
    Zhang, Lu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (15): : 8159 - 8172
  • [26] Targeted Optimization of Phenoxazine RedoxCenter for Nonaqueous Redox Flow Batteries
    Yan, Yichao
    Walser-Kuntz, Ryan
    Sanford, Melanie S.
    ACS MATERIALS LETTERS, 2022, 4 (04): : 733 - 739
  • [27] Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries
    Sharma, Shikha
    Rathod, Suman
    Prakash Yadav, Satya
    Chakraborty, Arunavo
    Shukla, Ashok K.
    Aetukuri, Nagaphani
    Patil, Satish
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (47) : 12172 - 12180
  • [28] Potassium supporting electrolyte enhances stability of Ti-substituted polyoxovanadates for nonaqueous redox flow batteries
    Dagar, Mamta
    Brennessel, William W.
    Matson, Ellen M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1517 - 1529
  • [29] Redox flow batteries as the means for energy storage
    Vanysek, Petr
    Novak, Vitezslav
    JOURNAL OF ENERGY STORAGE, 2017, 13 : 435 - 441
  • [30] Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries
    Kowalski, Jeffrey A.
    Su, Liang
    Milshtein, Jarrod D.
    Brushett, Fikile R.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 : 45 - 52