Deep learning for mass detection in Full Field Digital Mammograms

被引:77
|
作者
Agarwal, Richa [1 ]
Diaz, Oliver [1 ,2 ]
Yap, Moi Hoon [3 ]
Llado, Xavier [1 ]
Marti, Robert [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, VICOROB, Girona, Spain
[2] Univ Barcelona, Dept Math & Comp Sci, Barcelona, Spain
[3] Manchester Metropolitan Univ, Dept Comp & Math, Manchester, Lancs, England
关键词
Deep learning; CNN; Mammogram; FFDM; Mass detection; CLASSIFICATION; SEGMENTATION; DIAGNOSIS;
D O I
10.1016/j.compbiomed.2020.103774
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, the use of Convolutional Neural Networks (CNNs) in medical imaging has shown improved performance in terms of mass detection and classification compared to current state-of-the-art methods. This paper proposes a fully automated framework to detect masses in Full-Field Digital Mammograms (FFDM). This is based on the Faster Region-based Convolutional Neural Network (Faster-RCNN) model and is applied for detecting masses in the large-scale OPTIMAM Mammography Image Database (OMI-DB), which consists of similar to 80,000 FFDMs mainly from Hologic and General Electric (GE) scanners. This research is the first to benchmark the performance of deep learning on OMI-DB. The proposed framework obtained a True Positive Rate (TPR) of 0.93 at 0.78 False Positive per Image (FPI) on FFDMs from the Hologic scanner. Transfer learning is then used in the Faster R-CNN model trained on Hologic images to detect masses in smaller databases containing FFDMs from the GE scanner and another public dataset INbreast (Siemens scanner). The detection framework obtained a TPR of 0.91 +/- 0.06 at 1.69 FPI for images from the GE scanner and also showed higher performance compared to state-of-the-art methods on the INbreast dataset, obtaining a TPR of 0.99 +/- 0.03 at 1.17 FPI for malignant and 0.85 +/- 0.08 at 1.0 FPI for benign masses, showing the potential to be used as part of an advanced CAD system for breast cancer screening.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regularized discriminant analysis for breast mass detection on full field digital mammograms
    Wei, Jun
    Sahiner, Berkman
    Zhang, Yiheng
    Chan, Heang-Ping
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    Ge, Jun
    Wu, Yi-Ta
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [2] Automatic Dual-View Mass Detection in Full-Field Digital Mammograms
    Amit, Guy
    Hashoul, Sharbell
    Kisilev, Pavel
    Ophir, Boaz
    Walach, Eugene
    Zlotnick, Aviad
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 : 44 - 52
  • [3] Mass detection in mammograms using pre-trained deep learning models
    Agarwal, Richa
    Diaz, Oliver
    Llado, Xavier
    Marti, Robert
    14TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI 2018), 2018, 10718
  • [4] Mass Detection in Mammograms Using a Robust Deep Learning Model
    Singh, Vivek Kumar
    Abdel-Nasser, Mohamed
    Rashwan, Hatem A.
    Akram, Farhan
    Haffar, Rami
    Pandey, Nidhi
    Sarker, Md Mostafa Kamal
    Kohan, Sebastian
    Guma, Josep
    Romani, Santiago
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 365 - 372
  • [5] Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning
    Suh, Yong Joon
    Jung, Jaewon
    Cho, Bum-Joo
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 11
  • [6] Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
    Sahu, Adyasha
    Das, Pradeep Kumar
    Meher, Sukadev
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 114
  • [7] Radiomics based detection and characterization of suspicious lesions on full field digital mammograms
    Sapate, Suhas G.
    Mahajan, Abhishek
    Talbar, Sanjay N.
    Sable, Nilesh
    Desai, Subhash
    Thakur, Meenakshi
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 163 : 1 - 20
  • [8] Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning
    Carneiro, Gustavo
    Nascimento, Jacinto
    Bradley, Andrew P.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) : 2355 - 2365
  • [9] Breast density assessment via deep learning: Head-to-head model comparisons in full-field digital mammograms and synthetic mammograms
    Anant, Krisha
    Lopez, Juanita Hernandez
    Das Gupta, Sneha
    Bennett, Debbie L.
    Gastounioti, Aimilia
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [10] Combining Deep Convolutional Networks and SVMs for Mass Detection on Digital Mammograms
    Wichakam, Itsara
    Vateekul, Peerapon
    2016 8TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2016, : 239 - 244