Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics

被引:91
作者
Zhu, Qiang [1 ]
Zeng, Qingfeng [1 ,2 ]
Oganov, Artem R. [1 ,3 ]
机构
[1] SUNY Stony Brook, Dept Geosci, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] NW Polytech Univ, Natl Key Lab Thermostruct Composite Mat, Xian 710072, Peoples R China
[3] Moscow MV Lomonosov State Univ, Dept Geol, Moscow 119992, Russia
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 20期
基金
美国国家科学基金会;
关键词
AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURES; ROOM-TEMPERATURE; GRAPHITE; PHASE; SUPERCONDUCTIVITY; DIAMOND; PREDICT;
D O I
10.1103/PhysRevB.85.201407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a systematic search for low-energy metastable superhard carbon allotropes by using the recently developed evolutionary metadynamics technique. It is known that cold compression of graphite produces an allotrope at 15-20 GPa. Here we look for all low-enthalpy structures accessible from graphite. Starting from 2H- or 3R-graphite and applying a pressure of 20 GPa, a large variety of intermediate sp(3) carbon allotropes were observed in evolutionary metadynamics simulation. Our calculation not only found all the previous proposed candidates for "superhard graphite," but also predicted two allotropes (X-carbon and Y-carbon) showing unusual types of 5+7 and 4+8 topologies. These superhard carbon allotropes can be classified into five families based on 6 (diamond/lonsdaleite), 5+7 (M-and W-carbon), 5+7 (X-carbon), 4+8 (bct-C-4), and 4+8 (Y-carbon) topologies. This study shows that evolutionary metadynamics is a powerful approach both to find the global minima and systematically search for low-energy metastable phases reachable from given starting materials.
引用
收藏
页数:6
相关论文
共 31 条
  • [1] Crystal Structure of Cold Compressed Graphite
    Amsler, Maximilian
    Flores-Livas, Jose A.
    Lehtovaara, Lauri
    Balima, Felix
    Ghasemi, S. Alireza
    Machon, Denis
    Pailhes, Stephane
    Willand, Alexander
    Caliste, Damien
    Botti, Silvana
    San Miguel, Alfonso
    Goedecker, Stefan
    Marques, Miguel A. L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [2] CARBON - A NEW CRYSTALLINE PHASE
    AUST, RB
    DRICKAMER, HG
    [J]. SCIENCE, 1963, 140 (356) : 817 - &
  • [3] A carbon phase that graphitizes at room temperature
    Baughman, RH
    Liu, AY
    Cui, C
    Schields, PJ
    [J]. SYNTHETIC METALS, 1997, 86 (1-3) : 2371 - 2374
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Boulfelfel S. E., SCI REP IN PRESS
  • [6] Superconductivity in diamond
    Ekimov, EA
    Sidorov, VA
    Bauer, ED
    Mel'nik, NN
    Curro, NJ
    Thompson, JD
    Stishov, SM
    [J]. NATURE, 2004, 428 (6982) : 542 - 545
  • [7] Structures of Diamond-like Phases
    Greshnyakov, V. A.
    Belenkov, E. A.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2011, 113 (01) : 86 - 95
  • [8] OPTICAL REFLECTIVITY OF GRAPHITE UNDER PRESSURE
    HANFLAND, M
    SYASSEN, K
    SONNENSCHEIN, R
    [J]. PHYSICAL REVIEW B, 1989, 40 (03): : 1951 - 1954
  • [9] Materials - Ultrahard polycrystalline diamond from graphite
    Irifune, T
    Kurio, A
    Sakamoto, S
    Inoue, T
    Sumiya, H
    [J]. NATURE, 2003, 421 (6923) : 599 - 600
  • [10] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186