Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly

被引:19
作者
Ziminska, Monika [1 ]
Dunne, Nicholas [2 ,3 ,4 ]
Hamilton, Andrew R. [1 ]
机构
[1] Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg,Stranmillis Rd, Belfast BT9 5AH, Antrim, North Ireland
[2] Dublin City Univ, Sch Mech & Mfg Engn, Ctr Med Engn Res, Stokes Bldg, Dublin 9, Ireland
[3] Univ Dublin Trinity Coll, Trinity Biomed Sci Inst, Trinity Ctr Bioengn, Dublin 2, Ireland
[4] Queens Univ Belfast, Sch Pharm, 97 Lisburn Rd, Belfast BT9 7BL, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
porous materials; layer-by-layer assembly; polymer nanoclay composites; mechanical properties; foams; POLYURETHANE FOAM; POLYELECTROLYTE MULTILAYERS; EXPONENTIAL-GROWTH; CELLULAR MATERIALS; FILLED COATINGS; FILMS; COMPOSITES; REDUCE;
D O I
10.1021/acsami.6b07806
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff lightweight honeycomb and lattice materials.
引用
收藏
页码:21968 / 21973
页数:6
相关论文
共 30 条
  • [1] Traversing Material Scales: Macroscale LBL-Assembled Nanocomposites with Microscale Inverted Colloidal Crystal Architecture
    Andres, Christine M.
    Fox, Mary L.
    Kotov, Nicholas A.
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (01) : 9 - 11
  • [2] Nanobrick wall multilayer thin films grown faster and stronger using electrophoretic deposition
    Cho, Chungyeon
    Wallace, Kevin L.
    Hagen, David A.
    Stevens, Bart
    Regev, Oren
    Grunlan, Jaime C.
    [J]. NANOTECHNOLOGY, 2015, 26 (18) : 1 - 7
  • [3] 3D-Printing of Lightweight Cellular Composites
    Compton, Brett G.
    Lewis, Jennifer A.
    [J]. ADVANCED MATERIALS, 2014, 26 (34) : 5930 - +
  • [4] Polyelectrolyte multilayered assemblies in biomedical technologies
    Costa, Rui R.
    Mano, Joao F.
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (10) : 3453 - 3479
  • [5] Numerical Simulation of Mechanical Properties of Cellular Materials Using Computed Tomography Analysis
    Fischer, F.
    Lim, G. T.
    Handge, U. A.
    Altstaedt, V.
    [J]. JOURNAL OF CELLULAR PLASTICS, 2009, 45 (05) : 441 - 460
  • [6] Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores
    George, Tochukwu
    Deshpande, Vikram S.
    Wadley, Haydn N. G.
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 47 : 31 - 40
  • [7] Gibson L. J., 1997, STRUCTURE PROPERTIES, P175
  • [8] ELASTIC BEHAVIOR OF OPEN-CELL ALUMINA
    HAGIWARA, H
    GREEN, DJ
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1987, 70 (11) : 811 - 815
  • [9] ANISOTROPY OF FOAMS
    HUBER, AT
    GIBSON, LJ
    [J]. JOURNAL OF MATERIALS SCIENCE, 1988, 23 (08) : 3031 - 3040
  • [10] Relative modulus-relative density relationships in low density polymer-clay nanocomposite foams
    Istrate, Oana M.
    Chen, Biqiong
    [J]. SOFT MATTER, 2011, 7 (05) : 1840 - 1848