Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts

被引:634
作者
Grant, J. T. [1 ]
Carrero, C. A. [1 ]
Goeltl, F. [1 ]
Venegas, J. [2 ]
Mueller, P. [1 ]
Burt, S. P. [2 ]
Specht, S. E. [1 ]
McDermott, W. P. [1 ]
Chieregato, A. [1 ]
Hermans, I. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA
关键词
VANADIUM-OXIDE CATALYSTS; RAMAN-SPECTROSCOPY; GRAPHENE OXIDE; LIGHT ALKANES; NANOTUBES; NANOSHEETS; KINETICS; OLEFINS; METALS; SITES;
D O I
10.1126/science.aaf7885
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exothermic oxidative dehydrogenation of propane reaction to generate propene has the potential to be a game-changing technology in the chemical industry. However, even after decades of research, selectivity to propene remains too low to be commercially attractive because of overoxidation of propene to thermodynamically favored CO2. Here, we report that hexagonal boron nitride and boron nitride nanotubes exhibit unique and hitherto unanticipated catalytic properties, resulting in great selectivity to olefins. As an example, at 14% propane conversion, we obtain selectivity of 79% propene and 12% ethene, another desired alkene. Based on catalytic experiments, spectroscopic insights, and ab initio modeling, we put forward a mechanistic hypothesis in which oxygen-terminated armchair boron nitride edges are proposed to be the catalytic active sites.
引用
收藏
页码:1570 / 1573
页数:4
相关论文
共 37 条
[1]   Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts [J].
Carrero, C. A. ;
Schloegl, R. ;
Wachs, I. E. ;
Schomaecker, R. .
ACS CATALYSIS, 2014, 4 (10) :3357-3380
[2]   High performance (VOx)n-( TiOx)m/SBA-15 catalysts for the oxidative dehydrogenation of propane [J].
Carrero, Carlos ;
Kauer, Markus ;
Dinse, Arne ;
Wolfram, Till ;
Hamilton, Neil ;
Trunschke, Annette ;
Schloegl, Robert ;
Schomaecker, Reinhard .
CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (03) :786-794
[3]   Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? [J].
Cavani, F. ;
Ballarini, N. ;
Cericola, A. .
CATALYSIS TODAY, 2007, 127 (1-4) :113-131
[4]   Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution? [J].
Cavani, Fabrizio ;
Teles, Joaquim Henrique .
CHEMSUSCHEM, 2009, 2 (06) :508-534
[5]   Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides [J].
Chen, KD ;
Bell, AT ;
Iglesia, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (06) :1292-1299
[6]   Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts [J].
Chen, KD ;
Khodakov, A ;
Yang, J ;
Bell, AT ;
Iglesia, E .
JOURNAL OF CATALYSIS, 1999, 186 (02) :325-333
[7]   Boron nitride nanotubes: Pronounced resistance to oxidation [J].
Chen, Y ;
Zou, J ;
Campbell, SJ ;
Le Caer, G .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2430-2432
[8]   BORON-NITRIDE NANOTUBES [J].
CHOPRA, NG ;
LUYKEN, RJ ;
CHERREY, K ;
CRESPI, VH ;
COHEN, ML ;
LOUIE, SG ;
ZETTL, A .
SCIENCE, 1995, 269 (5226) :966-967
[9]   Molecular structure and reactivity of vanadia-based catalysts for propane oxidative dehydrogenation studied by in situ Raman spectroscopy and catalytic activity measurments [J].
Christodoulakis, A ;
Machli, M ;
Lemonidou, AA ;
Boghosian, S .
JOURNAL OF CATALYSIS, 2004, 222 (02) :293-306
[10]  
Degnan T., 2016, FOCUS CATAL, V2016