FRACTIONAL FOURIER TRANSFORM: DUALITY, CORRELATION THEOREM AND APPLICATIONS

被引:0
|
作者
Bahri, Mawardi [1 ]
Ashino, Ryuichi [2 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar 90245, Indonesia
[2] Osaka Kyoiku Univ, Math & Informat, Osaka 5828582, Japan
来源
PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCEON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR) | 2022年
关键词
Fractional Fourier Transform; Convolution; Correlation; Duality Property; Gaussian Function;
D O I
10.1109/ICWAPR56446.2022.9947156
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We first start by introducing the fractional Fourier transform. We exhibit that the direct relationship between the fractional Fourier transform and Fourier transform can be developed for obtaining the fractional Fourier transform of a function. We then establish the duality property related to the fractional Fourier transform. It is shown that the correlation theorem can be found using the natural link between the convolution and correlation definitions in the fractional Fourier domains. For applications, various consequences of the convolution and correlation theorems including the fractional Fourier transform are also investigated in detail.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 50 条
  • [31] Two New Convolutions for the Fractional Fourier Transform
    Anh, P. K.
    Castro, L. P.
    Thao, P. T.
    Tuan, N. M.
    WIRELESS PERSONAL COMMUNICATIONS, 2017, 92 (02) : 623 - 637
  • [32] Fractional Fourier Transform Meets Transformer Encoder
    Sahinuc, Furkan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2258 - 2262
  • [33] Two New Convolutions for the Fractional Fourier Transform
    P. K. Anh
    L. P. Castro
    P. T. Thao
    N. M. Tuan
    Wireless Personal Communications, 2017, 92 : 623 - 637
  • [34] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 751 - 755
  • [35] Computation of the fractional Fourier transform
    Bultheel, A
    Martinez Sulbaran HE
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) : 182 - 202
  • [36] Fractional Fourier Transform Reflectometry
    Shiloh, Lihi
    Eyal, Avishay
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [37] On fractional Fourier transform moments
    Alieva, T
    Bastiaans, MJ
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 320 - 323
  • [38] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [39] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [40] The van Cittert-Zernike theorem: a fractional order Fourier transform point of view
    Torres, CO
    Torres, Y
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 11 - 14