FRACTIONAL FOURIER TRANSFORM: DUALITY, CORRELATION THEOREM AND APPLICATIONS

被引:0
|
作者
Bahri, Mawardi [1 ]
Ashino, Ryuichi [2 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar 90245, Indonesia
[2] Osaka Kyoiku Univ, Math & Informat, Osaka 5828582, Japan
来源
PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCEON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR) | 2022年
关键词
Fractional Fourier Transform; Convolution; Correlation; Duality Property; Gaussian Function;
D O I
10.1109/ICWAPR56446.2022.9947156
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We first start by introducing the fractional Fourier transform. We exhibit that the direct relationship between the fractional Fourier transform and Fourier transform can be developed for obtaining the fractional Fourier transform of a function. We then establish the duality property related to the fractional Fourier transform. It is shown that the correlation theorem can be found using the natural link between the convolution and correlation definitions in the fractional Fourier domains. For applications, various consequences of the convolution and correlation theorems including the fractional Fourier transform are also investigated in detail.
引用
收藏
页码:35 / 41
页数:7
相关论文
共 50 条
  • [1] Correlation theorem and applications associated with the fractional Fourier transform in polar coordinates
    Gao, Wen-Biao
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 495
  • [2] Speckle correlation and the Fractional Fourier transform
    Kelly, DP
    Hennelly, BM
    Sheridan, JT
    OPTICAL INFORMATION SYSTEMS II, 2004, 5557 : 255 - 266
  • [3] Fractional quaternion Fourier transform, convolution and correlation
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2008, 88 (10) : 2511 - 2517
  • [4] Flexible optical implementation of fractional Fourier transform processors. Applications to correlation and filtering
    Garcia, J
    Dorsch, RG
    Lohmann, AW
    Ferreira, C
    Zalevsky, Z
    OPTICS COMMUNICATIONS, 1997, 133 (1-6) : 393 - 400
  • [5] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [6] An Improved Product Theorem for Fractional Fourier Transform
    Mohindru, Pooja
    Khanna, Rajesh
    Bhatia, S. S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2012, 82 (04) : 343 - 345
  • [7] An Improved Product Theorem for Fractional Fourier Transform
    Pooja Mohindru
    Rajesh Khanna
    S. S. Bhatia
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2012, 82 : 343 - 345
  • [8] Different forms of Plancherel theorem for fractional quaternion Fourier transform
    Wei, Deyun
    Li, Yuanmin
    OPTIK, 2013, 124 (24): : 6999 - 7002
  • [9] A convolution and product theorem for the fractional Fourier transform
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (04) : 101 - 103
  • [10] Novel convolution and correlation theorems for the fractional Fourier transform
    Wei, Deyun
    OPTIK, 2016, 127 (07): : 3669 - 3675