Image Reconstruction Based on Structured Sparsity for Electrical Impedance Tomography

被引:0
|
作者
Wang, Qi [1 ]
He, Jing [1 ]
Wang, Jianming [1 ]
Li, Xiuyan [1 ]
Duan, Xiaojie [1 ]
机构
[1] Tianjin Polytech Univ, Sch Elect & Informat Engn, Tianjin Key Lab Optoelect Detect Technol & Syst, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical impedance tomography; structured sparsity; Symkaczmarz iteration method; image reconstruction; ALGORITHM;
D O I
10.1145/3278198.3278216
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electrical impedance tomography (EIT) is a tomographic imaging modality for reconstructing the conductivity distribution through boundary current injection and induced voltage measurement. High-quality image is of great significant for improving the qualitative imaging performance in biomedical application. In this paper, the structured sparsity algorithm is proposed to incorporate with the underlying structure of the conductivity on the basis of the sparse priors. The structured sparsity is integrated into the iterative process of the Symkaczmarz algorithm for EIT image reconstruction. Both simulation and experiment results indicate that the proposed method has feasibility for pulmonary ventilation imaging and great potential for improving the image quality.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 50 条
  • [31] Highly Accurate Image Reconstruction Using Electrical Impedance Tomography
    Kriz, T.
    Dusek, J.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 767 - 771
  • [32] RBF neural network image reconstruction for electrical impedance tomography
    Wang, C
    Lang, R
    Wang, HX
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2549 - 2552
  • [33] Constrained image reconstruction for magnetic detection electrical impedance tomography
    Ireland, Rob H.
    Barber, David C.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2007, 17 (06) : 379 - 382
  • [35] Three-dimensional image reconstruction for electrical impedance tomography
    Kleinermann, F
    Avis, NJ
    Judah, SK
    Barber, DC
    PHYSIOLOGICAL MEASUREMENT, 1996, 17 : A77 - A83
  • [36] Image reconstruction for lung monitoring in wearable electrical impedance tomography
    Wocik, Dariusz
    Stefaniak, Barbara
    Wos, Michal
    Kiczek, Bartlomiej
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (03): : 106 - 109
  • [37] TSS-ConvNet for electrical impedance tomography image reconstruction
    Ameen, Ayman A.
    Sack, Achim
    Poeschel, Thorsten
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [38] Nonlinear reconstruction constrained by image properties in electrical impedance tomography
    Blott, BH
    Daniell, GJ
    Meeson, S
    PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (05): : 1215 - 1224
  • [39] A Conditional Diffusion Model for Electrical Impedance Tomography Image Reconstruction
    Shi, Shuaikai
    Kang, Ruiyuan
    Liatsis, Panos
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [40] Advances of deep learning in electrical impedance tomography image reconstruction
    Zhang, Tao
    Tian, Xiang
    Liu, XueChao
    Ye, JianAn
    Fu, Feng
    Shi, XueTao
    Liu, RuiGang
    Xu, CanHua
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10