Chebyshev spectral methods for multi-order fractional neutral pantograph equations

被引:49
|
作者
Ezz-Eldien, S. S. [1 ,2 ,3 ]
Wang, Y. [1 ]
Abdelkawy, M. A. [4 ,5 ]
Zaky, M. A. [6 ]
Aldraiweesh, A. A. [2 ]
Machado, J. Tenreiro [7 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] King Saud Univ, Coll Educ, Riyadh, Saudi Arabia
[3] New Valley Univ, Fac Sci, Dept Math, El Kharga 72511, Egypt
[4] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[5] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[6] Natl Res Ctr, Dept Appl Math, Giza 12622, Egypt
[7] Polytech Porto, Dept Elect Engn, Inst Engn, Rua Dr Antonio Bernardino Almeida 431, P-4249015 Porto, Portugal
关键词
Fractional differential equations; Pantograph equations; Spectral methods; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; GROWTH;
D O I
10.1007/s11071-020-05728-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper is concerned with the application of the spectral tau and collocation methods to delay multi-order fractional differential equations with vanishing delayrx(0<r<1)The fractional derivatives are described in the Caputo sense. The model solution is expanded in terms of Chebyshev polynomials. The convergence of the proposed approaches is investigated in the weightedL2-norm. Numerical examples are provided to highlight the convergence rate and the flexibility of this approach. Our results confirm that nonlocal numerical methods are best suited to discretize fractional differential equations as they naturally take the global behavior of the solution into account.
引用
收藏
页码:3785 / 3797
页数:13
相关论文
共 50 条
  • [1] Chebyshev spectral methods for multi-order fractional neutral pantograph equations
    S. S. Ezz-Eldien
    Y. Wang
    M. A. Abdelkawy
    M. A. Zaky
    A. A. Aldraiweesh
    J. Tenreiro Machado
    Nonlinear Dynamics, 2020, 100 : 3785 - 3797
  • [2] Spectral Galerkin schemes for a class of multi-order fractional pantograph equations
    Alsuyuti, M. M.
    Doha, E. H.
    Ezz-Eldien, S. S.
    Youssef, I. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 384
  • [3] SPECTRAL COLLOCATION METHOD FOR MULTI-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Ghoreishi, F.
    Mokhtary, P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (05)
  • [4] Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations
    Arman Dabiri
    Eric A. Butcher
    Nonlinear Dynamics, 2017, 90 : 185 - 201
  • [5] Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations
    Dabiri, Arman
    Butcher, Eric A.
    NONLINEAR DYNAMICS, 2017, 90 (01) : 185 - 201
  • [6] Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations
    Atabakzadeh, M. H.
    Akrami, M. H.
    Erjaee, G. H.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (20-21) : 8903 - 8911
  • [7] Generalized Bessel Polynomial for Multi-Order Fractional Differential Equations
    Izadi, Mohammad
    Cattani, Carlo
    SYMMETRY-BASEL, 2020, 12 (08):
  • [8] On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems
    Zaky, Mahmoud A.
    Ameen, Ibrahem G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03):
  • [9] Operational matrix for multi-order fractional differential equations with hermite polynomials
    Yalman Kosunalp, Hatice
    Gulsu, Mustafa
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (04): : 1050 - 1057
  • [10] Solving Nonlinear Multi-Order Fractional Differential Equations Using Bernstein Polynomials
    Algazaa, Shahad Adil Taher
    Saeidian, Jamshid
    IEEE ACCESS, 2023, 11 : 128032 - 128043