Local polynomial maximum likelihood estimation for Pareto-type distributions

被引:33
作者
Beirlant, J
Goegebeur, Y
机构
[1] Catholic Univ Louvain, Dept Appl Econ, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Katholieke Univ Leuven, Ctr Stat, B-3001 Heverlee, Belgium
关键词
extreme-value index; generalized Pareto distribution; local polynomial maximum likelihood estimation;
D O I
10.1016/S0047-259X(03)00125-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the estimation of the tail index of a heavy-tailed distribution when covariate information is available. The approach followed here is based on the technique of local polynomial maximum likelihood estimation. The generalized Pareto distribution is fitted locally to exceedances over a high specified threshold. The method provides nonparametric estimates of the parameter functions and their derivatives up to the degree of the chosen polynomial. Consistency and asymptotic normality of the proposed estimators will be proven under suitable regularity conditions. This approach is motivated by the fact that in some applications the threshold should be allowed to change with the covariates due to significant effects on scale and location of the conditional distributions. Using the asymptotic results we are able to derive an expression for the asymptotic mean squared error, which can be used to guide the selection of the bandwidth and the threshold. The applicability of the method will be demonstrated with a few practical examples. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 22 条
[1]   Local polynomial estimation in multiparameter likelihood models [J].
Aerts, M ;
Claeskens, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1536-1545
[2]   Regression with response distributions of Pareto-type [J].
Beirlant, J ;
Goegebeur, Y .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (04) :595-619
[3]  
Beirlant J., 1996, Practical analysis of extreme values
[4]  
Beirlant J., 1999, EXTREMES, V2, P177, DOI DOI 10.1023/A:1009975020370
[5]   Cumulative frequency functions [J].
Burr, IW .
ANNALS OF MATHEMATICAL STATISTICS, 1942, 13 :215-232
[6]  
CHAVEZDEMOULIN V, 2000, SMOOTH POINT PROCESS
[7]  
Coles S., 2001, An introduction to statistical modeling of extreme values, DOI DOI 10.1007/978-1-4471-3675-0
[8]   Estimating the tail index [J].
Csörgö, S ;
Viharos, L .
ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, :833-881
[9]   Local likelihood smoothing of sample extremes [J].
Davison, AC ;
Ramesh, NI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :191-208
[10]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393