STRONG MORITA EQUIVALENCE OF INVERSE SEMIGROUPS

被引:0
作者
Steinberg, Benjamin [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
来源
HOUSTON JOURNAL OF MATHEMATICS | 2011年 / 37卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Morita equivalence; inverse semigroups; etale groupoids; C*-algebras; C-ASTERISK-ALGEBRAS; CSTAR-ALGEBRAS; REPRESENTATION; EXPANSIONS; GROUPOIDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce strong Morita equivalence for inverse semigroups. This notion encompasses Mark Lawson's concept of enlargement. Strongly Morita equivalent inverse semigroups have Morita equivalent universal groupoids in the sense of Paterson and hence strongly Morita equivalent universal and reduced C*-algebras. As a consequence we obtain a new proof of a result of Khoshkam and Skandalis showing that the C*-algebra of an F-inverse semigroup is strongly Morita equivalent to a cross product of a commutative C*-algebra by a group.
引用
收藏
页码:895 / 927
页数:33
相关论文
共 44 条
[1]   Enveloping actions and Takai duality for partial actions [J].
Abadie, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :14-67
[2]   MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS [J].
ABRAMS, GD .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) :801-837
[3]  
[Anonymous], 2000, GRUYTER EXPOSITIONS
[4]  
[Anonymous], 2004, CAH TOPOL G OM DIFF
[5]  
[Anonymous], Lecture Notes in Mathematics
[6]  
[Anonymous], 2004, Documenta Math.
[7]   ALMOST FINITE EXPANSIONS OF ARBITRARY SEMIGROUPS [J].
BIRGET, JC ;
RHODES, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 32 (03) :239-287
[8]  
CLIFFORD AH, 1961, MATH SURVEYS AM MATH, V7
[9]   SIMPLE CSTAR-ALGEBRAS GENERATED BY ISOMETRIES [J].
CUNTZ, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 57 (02) :173-185
[10]   CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS [J].
CUNTZ, J ;
KRIEGER, W .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :251-268