Forward integrals and an Ito formula for fractional Brownian motion

被引:5
作者
Biagini, Francesca [1 ]
Oksendal, Bernt [2 ,3 ]
机构
[1] Univ Bologna, Dept Math, I-40127 Bologna, Italy
[2] Univ Oslo, Dept Math, CMA, N-0316 Oslo, Norway
[3] Norwegian Sch Econ & Business Adm, N-5045 Bergen, Norway
关键词
forward integral; Wick-Ito-Skorohod integral; Wick product; Malliavin derivative; fractional Brownian motion; Ito formula;
D O I
10.1142/S0219025708003105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the forward integral with respect ot fractional Brownian motion B((H))(t) and relate this to the Wick-Ito-Skorohod integral by using the M-operator introduced by Ref. 10 and the Malliavin derivative D(t)((H)). Using this connection we obtain a general Ito formula for the Wick-Ito-Skorohod integrals with respect to B(H)(t), valid for H epsilon (1/2,1).
引用
收藏
页码:157 / 177
页数:21
相关论文
共 27 条
  • [1] AASE K, 2000, FINANC STOCH, V4, P465
  • [2] Stochastic calculus with respect to Gaussian processes
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 766 - 801
  • [3] Alòs E, 2001, TAIWAN J MATH, V5, P609
  • [4] ALOS E, STOCH STOCH IN PRESS
  • [5] [Anonymous], STOCH STOCH REP
  • [6] An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter
    Bender, C
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) : 81 - 106
  • [7] An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion
    Biagini, F
    Oksendal, B
    Sulem, A
    Wallner, N
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2041): : 347 - 372
  • [8] BIAGINI F, FRACTIONAL IN PRESS
  • [9] Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2)
    Cheridito, P
    Nualart, D
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06): : 1049 - 1081
  • [10] Stochastic calculus for fractional Brownian motion - I. Theory
    Duncan, TE
    Hu, YZ
    Pasik-Duncan, B
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) : 582 - 612