A micro-sized Si-CNT anode for practical application via a one-step, low-cost and green method

被引:10
作者
Li, Chao [1 ]
Ju, Yuhang [2 ]
Qi, Li [2 ]
Yoshitake, Hideya [3 ]
Wang, Hongyu [2 ]
机构
[1] Dongguan Univ Technol, Coll Chem Engn & Energy Technol, Dongguan 523808, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, 5625 Renmin St, Changchun 130022, Jilin, Peoples R China
[3] Yamagata Univ, Fac Engn, Jyonan 4-3-16, Yonezawa, Yamagata 9928510, Japan
基金
中国国家自然科学基金;
关键词
LI-ION BATTERIES; COATED SILICON NANOCOMPOSITES; HIGH-CAPACITY; ELECTROCHEMICAL CHARACTERIZATIONS; CARBON COMPOSITE; LITHIUM STORAGE; SUPERIOR ANODE; PERFORMANCE; NANOPARTICLES; CHALLENGES;
D O I
10.1039/c7ra11350a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon (Si) has been used in Li-ion batteries (LIBs), and considerable progress has been achieved in design and engineering with improved capacity and cycling. However, large-scale application of Si-based anodes is hindered owing to the wide use of toxic raw materials, high manufacturing cost, limited capacity and unpalatable tap density. Herein, we describe a low-cost and green route to solve these problems. Composite Si-carbon nanotube (CNT) spheres were synthesized using a scalable method: rotary spray drying. These spheres were interspersed by many CNTs and wrapped Si nanoparticles (SiNPs) within them. Due to slightly rigid structure of CNTs, many void spaces in spheres could be preserved during the agglomeration of spheres. These voids could accommodate the volume expansion of Si particles and promote a stable integral structure during cycling. Importantly, this micron-grade material could improve the volume density and tap density to achieve high energy density. The prepared material showed promising reversible capacity of 2500 mA h g(-1) with retention of 98% during 500 cycles. Ultra-fast discharge-charge (900 mA h g(-1) at 20C) was achieved owing to the crosslinking effect between CNTs and SiNPs in these spheres. Moreover, a high-performance Si material was actualized via a simple industrial method rather than a complex synthesis.
引用
收藏
页码:54844 / 54851
页数:8
相关论文
共 47 条
[1]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[2]   Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas [J].
Bao, Zhihao ;
Weatherspoon, Michael R. ;
Shian, Samuel ;
Cai, Ye ;
Graham, Phillip D. ;
Allan, Shawn M. ;
Ahmad, Gul ;
Dickerson, Matthew B. ;
Church, Benjamin C. ;
Kang, Zhitao ;
Abernathy, Harry W., III ;
Summers, Christopher J. ;
Liu, Meilin ;
Sandhage, Kenneth H. .
NATURE, 2007, 446 (7132) :172-175
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode [J].
Chen, Hedong ;
Wang, Zhoulu ;
Hou, Xianhua ;
Fu, Lijun ;
Wang, Shaofeng ;
Hu, Xiaoqiao ;
Qin, Haiqing ;
Wu, Yuping ;
Ru, Qiang ;
Liu, Xiang ;
Hu, Shejun .
ELECTROCHIMICA ACTA, 2017, 249 :113-121
[6]   Building a Better Battery [J].
Chiang, Yet-Ming .
SCIENCE, 2010, 330 (6010) :1485-1486
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :368-378
[9]   Silicon and carbon based composite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :557-563
[10]   Critical Role of Silicon Nanoparticles Surface on Lithium Cell Electrochemical Performance Analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS Spectroscopies [J].
Delpuech, N. ;
Mazouzi, D. ;
Dupre, N. ;
Moreau, P. ;
Cerbelaud, M. ;
Bridel, J. S. ;
Badot, J. -C. ;
De Vito, E. ;
Guyomard, D. ;
Lestriez, B. ;
Humbert, B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (31) :17318-17331