Nanocage-Based Tb3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO2 with Epoxides and Knoevenagel Condensation

被引:43
|
作者
Lv, Hongxiao [1 ]
Chen, Hongtai [1 ]
Fan, Liming [1 ]
Zhang, Xiutang [1 ]
机构
[1] North Univ China, Coll Sci, Dept Chem, Taiyuan 030051, Peoples R China
关键词
METAL-ORGANIC FRAMEWORK; HETEROGENEOUS CATALYST; CHEMICAL FIXATION; CAPTURE; SITES; MILD; ZN;
D O I
10.1021/acs.inorgchem.2c02302
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The catalytic performance of metal-organic framework (MOF)-based catalysts can be enhanced by increasing their catalytic sites, which prompts us to explore the multicore cluster-based skeletons by using designed functional ligands. Herein, the exquisite combination of [Tb4(mu 2-OH)2(CO2)8] cluster and 2,6-bis(2,4-dicarboxylphenyl)-4(4-carboxylphenyl)pyridine (H5BDCP) ligand generated a highly robust nanoporous framework of {[Tb4(BDCP)2(mu 2-OH)2]& BULL;3DMF & BULL;5H2O}n (NUC-58), in which each four {Tb4} clusters are woven together to generate an elliptical nanocage (aperature ca. 12.4 & ANGS;). As far as we know, NUC-58 is an excellent nanocage-cluster-based {Tb4}-organic framework with the outstanding confined pore environments of a large specific surface area, high porosity, and plentiful coexisting Lewis acid-base sites of Tb3+, mu 2-OH and Npyridine atoms. Performed experiments exhibited that NUC-58 owns a better catalytic performance for the cycloaddition reactions under mild conditions with a high turnover number and turnover frequency. Furthermore, NUC-58, as an eminent heterogeneous catalyst, can enormously boost the Knoevenagel condensation reactions. Thus, this work opens a path for the precise design of polynuclear metal cluster-based MOFs with excellent and behavior.
引用
收藏
页码:15558 / 15568
页数:11
相关论文
共 50 条
  • [1] Nanocage-based {In2Tm2}-organic framework for efficiently catalyzing the cycloaddition reaction of CO2 with epoxides and Knoevenagel condensation
    Lv, Hongxiao
    Chen, Hongtai
    Hu, Tuoping
    Zhang, Xiutang
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (22): : 5788 - 5798
  • [2] Heterometallic YbCo-Organic Framework for Efficiently Catalyzing Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation
    Lv, Hongxiao
    Fan, Liming
    Jiao, Chenxu
    Zhang, Xiutang
    CRYSTAL GROWTH & DESIGN, 2023, 23 (04) : 2882 - 2892
  • [3] Nanoporous {Co3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO2 and Knoevenagel condensation
    Zhang, Xiutang
    Wang, Xiaotong
    Li, Chong
    Hu, Tuoping
    Fan, Liming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 656 : 127 - 136
  • [4] Ultrahigh stable heterometallic InCo-organic framework for efficiently catalyzing cycloaddition of CO2 with epoxides and Knoevenagel condensation
    Wang, Xiaotong
    Li, Chong
    Hu, Tuoping
    Gao, Yanpeng
    Fan, Liming
    Zhang, Xiutang
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1318
  • [5] Highly Robust {In2}-Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation
    Liu, Shurong
    Chen, Hongtai
    Fan, Liming
    Zhang, Xiutang
    INORGANIC CHEMISTRY, 2023, 62 (08) : 3562 - 3572
  • [6] Robust {Cd4}-Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation
    Liu, Shurong
    Hu, Tuoping
    Yang, Kun
    Zhang, Xiutang
    CRYSTAL GROWTH & DESIGN, 2023, 23 (05) : 3320 - 3329
  • [7] Robust {Cd4}-Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation
    Liu S.
    Hu T.
    Yang K.
    Zhang X.
    Crystal Growth and Design, 2023, 23 (05): : 3320 - 3329
  • [8] Robust {Cd4}-Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation
    Liu, Shurong
    Hu, Tuoping
    Yang, Kun
    Zhang, Xiutang
    CRYSTAL GROWTH & DESIGN, 2023, : 3320 - 3329
  • [9] Robust heterometallic {In2CdO}-Organic framework for efficiently catalyzing CO2 cycloaddition and Knoevenagel condensation
    Zhang, Xiutang
    Wang, Xiaotong
    Li, Chong
    Fan, Liming
    Hu, Tuoping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [10] Robust {Cd2Zn} n -Organic Framework for Efficiently Catalyzing CO2 Cycloaddition and Knoevenagel Condensation
    Zhang, Zhengguo
    Liu, Shurong
    Liu, Youbin
    Zhang, Xiutang
    CRYSTAL GROWTH & DESIGN, 2023, 23 (09) : 6701 - 6711