Insight into the experimental and modeling study of process intensification for post-combustion CO2 capture by rotating packed bed

被引:24
作者
Zarei, Fariba [1 ]
Rahimi, Mahmood Reza [2 ]
Razavi, Razieh [3 ]
Baghban, Alireza [4 ]
机构
[1] Shiraz Univ, Dept Chem Engn, Shiraz, Iran
[2] Univ Yasuj, Chem Engn Dept, Proc Intensificat Lab, Yasuj 7591874831, Iran
[3] Univ Jiroft, Fac Sci, Dept Chem, Jiroft, Iran
[4] Amirkabir Univ Technol, Dept Chem Engn, Mahshahr Campus, Mahshahr, Iran
关键词
Process intensification; Rotating packed bed; CO2-liquid system; Mass transfer; Artificial neural network; EFFECTIVE INTERFACIAL AREA; MASS-TRANSFER; GAS-LIQUID; CETANE NUMBER; ABSORPTION;
D O I
10.1016/j.jclepro.2018.11.239
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of rotating packed bed is to intensify process conditions by using centrifugal forces. The effective interfacial area is a critical design factor and has a direct relationship with operational condition and mass transfer rate. Process intensification by the rotating packed bed is an emerging technology to improve the mass transfer rate in a high gravity system. Since there are limited modeling studies in order to control rotating packed bed parameters, in the present study, the multilayer perceptron artificial neural network (MLP) framework was successfully used to investigate the gas-liquid effective interfacial area in a rotating packed bed. In this regard, a number of 265 experimental data for the gas-liquid effective interfacial area was utilized by considering three groups including operational factors, physical dimension, and gas-liquid properties as the network' inputs. The mean relative error and R-square as analogy factors for verification of the model accuracy obtained to be 8.2% and 0.97, respectively. Accordingly, the present model can be a huge value in the CO2-liquid system and it is introduced as a novel strategy to determine the gas-liquid effective interfacial area in a rotating packed bed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:953 / 961
页数:9
相关论文
共 50 条
  • [21] Intensification of CO2 capture by monoethanolamine solution containing TiO2 nanoparticles in a rotating packed bed
    Dashti, Masoud Shirzadi Ahou
    Abolhasani, Mahdieh
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 94
  • [22] Effects of process configurations for combination of rotating-packed bed and packed bed on CO2 capture
    Yu, Cheng-Hsiu
    Chen, Ming-Tsz
    Chen, Hao
    Tan, Chung-Sung
    APPLIED ENERGY, 2016, 175 : 269 - 276
  • [23] Study of novel solvent for CO2 post-combustion capture
    Hadri, Nabil E. L.
    Dang Viet Quang
    Abu-Zahra, Mohammad R. M.
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2268 - 2286
  • [24] A review of research facilities, pilot and commercial plants for solvent-based post-combustion CO2 capture: Packed bed, phase-change and rotating processes
    Nessi, Evie
    Papadopoulos, Athanasios I.
    Seferlis, Panos
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 111
  • [25] Experimental Results of Split-Flow Modification for Post-combustion CO2 Capture Process
    Stec, Marcin
    Tatarczuk, Adam
    Wieclaw-Solny, Lucyna
    Krotki, Aleksander
    Spietz, Tomasz
    Wilk, Andrzej
    Spiewak, Dariusz
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 2: APPLICATIONS, 2018, : 441 - 453
  • [26] CO2 CAPTURE BY BIOMIMETIC ADSORPTION: ENZYME MEDIATED CO2 ABSORPTION FOR POST-COMBUSTION CARBON SEQUESTRATION AND STORAGE PROCESS
    Russo, Maria Elena
    Olivieri, Giuseppe
    Salatino, Piero
    Marzocchella, Antonio
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2013, 12 (08): : 1593 - 1601
  • [27] Study of a novel solvent system for CO2 capture from post-combustion flue gas
    Liu, Kun
    Qi, Guojie
    Matin, Naser
    Frimpong, Reynolds
    Liu, Kunlei
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1927 - 1932
  • [28] Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture
    Kvamsdal, H. M.
    Jakobsen, J. P.
    Hoff, K. A.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2009, 48 (01) : 135 - 144
  • [29] Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed
    Sheng, Miaopeng
    Xie, Chenxia
    Zeng, Xiaofei
    Sun, Baochang
    Zhang, Liangliang
    Chu, Guangwen
    Luo, Yong
    Chen, Jian-Feng
    Zou, Haikui
    FUEL, 2018, 234 : 1518 - 1527
  • [30] Solvent Selection for Post-Combustion CO2 Capture
    Salazar, Juan
    Diwekar, Urmila
    Joback, Kevin
    Berger, Adam H.
    Bhown, Abhoyjit S.
    GHGT-11, 2013, 37 : 257 - 264