Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma

被引:190
作者
Devanney, Nicholas A. [1 ]
Stewart, Andrew N. [1 ,2 ]
Gensel, John C. [1 ,2 ]
机构
[1] Univ Kentucky, Dept Physiol, Coll Med, Lexington, KY 40536 USA
[2] Univ Kentucky, Spinal Cord & Brain Injury Res Ctr, Coll Med, Lexington, KY 40536 USA
基金
美国国家卫生研究院;
关键词
Oxidative phosphorylation (OXPHOS); Mitochondria; Glucose; Glycolysis; Pentose phosphate pathway (PPP); NADPH; Reactive oxygen species (ROS); Classical activation; Alternative activation; Monocyte; TRAUMATIC BRAIN-INJURY; SPINAL-CORD; ALTERNATIVE ACTIVATION; INFLAMMATORY RESPONSE; FUNCTIONAL RECOVERY; ALZHEIMERS-DISEASE; ENERGY-METABOLISM; M2; MACROPHAGES; TISSUE-REPAIR; NADPH OXIDASE;
D O I
10.1016/j.expneurol.2020.113310
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Innate immune responses, particularly activation of macrophages and microglia, are increasingly implicated in CNS disorders. It is now appreciated that the heterogeneity of functions adopted by these cells dictates neuropathophysiology. Research efforts to characterize the range of pro-inflammatory and anti-inflammatory phenotypes and functions adopted by microglia and macrophages are fueled by the potential for inflammatory cells to both exacerbate neurodegeneration and promote repair/disease resolution. The stimulation-based, M1/M2 classification system has emerged over the last decade as a common language to discuss macrophage and microglia heterogeneity across different fields. However, discontinuities between phenotypic markers and function create potential hurdles for the utility of the M1/M2 system in the development of effective immunomodulatory therapeutics for neuroinflammation. A framework to approach macrophage and microglia heterogeneity from a function-based phenotypic approach comes from rapidly emerging evidence that metabolic processes regulate immune cell activation. This concept of immunometabolism, however, is only beginning to unfold in the study of neurodegeneration and has yet to receive much focus in the context of neurotrauma. In this review, we first discuss the current views of macrophage and microglia heterogeneity and limitations of the M1/M2 classification system for neuropathological studies. We then review and discuss the current literature supporting metabolism as a regulator of microglia function in vitro. Lastly, we evaluate the evidence that metabolism regulates microglia and macrophage phenotype in vivo in models of Alzheimer's disease (AD), stroke, traumatic brain injury (TBI) and spinal cord injury (SCI).
引用
收藏
页数:9
相关论文
共 87 条
  • [1] Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea
    Abe, Naoki
    Choudhury, Mohammed E.
    Watanabe, Minori
    Kawasaki, Shun
    Nishihara, Tasuku
    Yano, Hajime
    Matsumoto, Shirabe
    Kunieda, Takehiro
    Kumon, Yoshiaki
    Yorozuya, Toshihiro
    Tanaka, Junya
    [J]. GLIA, 2018, 66 (10) : 2158 - 2173
  • [2] Targeting innate immunity for neurodegenerative disorders of the central nervous system
    Andreasson, Katrin I.
    Bachstetter, Adam D.
    Colonna, Marco
    Ginhoux, Florent
    Holmes, Clive
    Lamb, Bruce
    Landreth, Gary
    Lee, Daniel C.
    Low, Donovan
    Lynch, Marina A.
    Monsonego, Alon
    O'Banion, M. Kerry
    Pekny, Milos
    Puschmann, Till
    Russek-Blum, Niva
    Sandusky, Leslie A.
    Selenica, Maj-Linda B.
    Takata, Kazuyuki
    Teeling, Jessica
    Town, Terrence
    Van Eldik, Linda J.
    [J]. JOURNAL OF NEUROCHEMISTRY, 2016, 138 (05) : 653 - 693
  • [3] A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
    Baardman, Jeroen
    Verberk, Sanne G. S.
    Prange, Koen H. M.
    van Weeghel, Michel
    van der Velden, Saskia
    Ryan, Dylan G.
    Wust, Rob C. I.
    Neele, Annette E.
    Speijer, Dave
    Denis, Simone W.
    Witte, Maarten E.
    Houtkooper, Riekelt H.
    O'neill, Luke A.
    Knatko, Elena V.
    Dinkova-Kostova, Albena T.
    Lutgens, Esther
    de Winther, Menno P. J.
    Van den Bossche, Jan
    [J]. CELL REPORTS, 2018, 25 (08): : 2044 - +
  • [4] A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease
    Baik, Sung Hoon
    Kang, Seokjo
    Lee, Woochan
    Choi, Hayoung
    Chung, Sunwoo
    Kim, Jong-Il
    Mook-Jung, Inhee
    [J]. CELL METABOLISM, 2019, 30 (03) : 493 - +
  • [5] Mitochondria in activated microglia in vitro
    Banati, RB
    Egensperger, R
    Maassen, A
    Hager, G
    Kreutzberg, GW
    Graeber, MB
    [J]. JOURNAL OF NEUROCYTOLOGY, 2004, 33 (05): : 535 - 541
  • [6] NOX2 deficiency alters macrophage phenotype through an IL-10/ STAT3 dependent mechanism: implications for traumatic brain injury
    Barrett, James P.
    Henry, Rebecca J.
    Villapol, Sonia
    Stoica, Bogdan A.
    Kumar, Alok
    Burns, Mark P.
    Faden, Alan I.
    Loane, David J.
    [J]. JOURNAL OF NEUROINFLAMMATION, 2017, 14
  • [7] Polarizing Macrophages through Reprogramming of Glucose Metabolism
    Blagih, Julianne
    Jones, Russell G.
    [J]. CELL METABOLISM, 2012, 15 (06) : 793 - 795
  • [8] Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool
    Chénais, B
    Morjani, H
    Drapier, JC
    [J]. JOURNAL OF NEUROCHEMISTRY, 2002, 81 (03) : 615 - 623
  • [9] Characterization of the expression and inflammatory activity of NADPH oxidase after spinal cord injury
    Cooney, S. J.
    Zhao, Y.
    Byrnes, K. R.
    [J]. FREE RADICAL RESEARCH, 2014, 48 (08) : 929 - 939
  • [10] Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury
    Cooney, Sean J.
    Bermudez-Sabogal, Sara L.
    Byrnes, Kimberly R.
    [J]. JOURNAL OF NEUROINFLAMMATION, 2013, 10