Dynamics of perturbed equilateral and collinear configurations of three point vortices

被引:0
|
作者
Gudimenko, A. I. [1 ]
机构
[1] Russian Acad Sci, Pacific Oceanol Inst, Vladivostok 690041, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2008年 / 13卷 / 02期
关键词
point vortices; integrable dynamics; perturbation theory;
D O I
10.1134/S1560354708020032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the technique of asymptotic expansions, we calculate trajectories of three point vortices in the vicinity of stable equilateral or collinear configurations. We show that in an appropriate rotating coordinate system each vortex moves in an elliptic orbit. The orbits of the vortices have equal eccentricities. The angle and ratio between the major axes of any two orbits have a simple analytic representation.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [41] Perturbed Rankine vortices in surface quasi-geostrophic dynamics
    Harvey, B. J.
    Ambaum, M. H. P.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2011, 105 (4-5): : 377 - 391
  • [42] Effects of sample geometry on the dynamics and configurations of vortices in mesoscopic superconductors
    Kim, Sangbum
    Burkardt, John
    Gunzburger, Max
    Peterson, Janet
    PHYSICAL REVIEW B, 2007, 76 (02)
  • [43] The vortex dynamics analogue of the restricted three-body problem: Advection in the field of three identical point vortices
    Neufeld, Z
    Tel, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 2263 - 2280
  • [44] Global Phase Diagrams of Three Point Vortices
    Luo, Qian
    Chen, Yufei
    Liu, Qihuai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (02):
  • [45] Motion of three point vortices in a periodic parallelogram
    Stremler, MA
    Aref, H
    JOURNAL OF FLUID MECHANICS, 1999, 392 : 101 - 128
  • [46] On the motion of three point vortices in a periodic strip
    Aref, H
    Stremler, MA
    JOURNAL OF FLUID MECHANICS, 1996, 314 : 1 - 25
  • [47] On the motion of three point vortices in a periodic strip
    Aref, Hassan
    Stremler, Mark A.
    Journal of Fluid Mechanics, 1996, 314 : 1 - 25
  • [48] Energy-Momentum Stability of Icosahedral Configurations of Point Vortices on a Sphere
    Newton, Paul K.
    Ostrovskyi, Vitalii
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (04) : 499 - 515
  • [49] Equilibrium configurations of point vortices for channel flows past interior obstacles
    Elcrat, AR
    Hu, C
    Miller, KG
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1997, 16 (02) : 277 - 292
  • [50] Shape dynamics of N point vortices on the sphere
    Ohsawa, Tomoki
    NONLINEARITY, 2023, 36 (02) : 1000 - 1028