FINITE-TIME LYAPUNOV STABILITY ANALYSIS OF EVOLUTION VARIATIONAL INEQUALITIES

被引:5
作者
Addi, Khalid [1 ]
Adly, Samir [2 ]
Saoud, Hassan [2 ]
机构
[1] Univ La Reunion, PIMENT EA 4518, F-97400 St Denis, France
[2] Univ Limoges, XLIM UMR CNRS 6172, F-87060 Limoges, France
关键词
Finite-Time stability; Lyapunov stability; LaSalle invariance principle; nonsmooth analysis; variational inequality; complementarity problem; differential inclusions; convex analysis; NONSMOOTH DYNAMICAL-SYSTEMS; INVARIANCE-PRINCIPLE;
D O I
10.3934/dcds.2011.31.1023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Lyapunov's stability and LaSalle's invariance principle for nonsmooth dynamical systems, we establish some conditions for finite-time stability of evolution variational inequalities. The theoretical results are illustrated by some examples drawn from electrical circuits involving nonsmooth elements like diodes.
引用
收藏
页码:1023 / 1038
页数:16
相关论文
共 25 条
[21]   ON THE PRINCIPLE OF LINEARIZED STABILITY FOR VARIATIONAL-INEQUALITIES [J].
QUITTNER, P .
MATHEMATISCHE ANNALEN, 1989, 283 (02) :257-270
[22]   AN INSTABILITY CRITERION FOR VARIATIONAL-INEQUALITIES [J].
QUITTNER, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (12) :1167-1180
[23]  
ROCKAFELLAR RT, 2009, PRINCETON MATH SERIE, V28
[24]   An integral invariance principle for differential inclusions with applications in adaptive control [J].
Ryan, EP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) :960-980
[25]  
Smirnov Georgi V, 2002, Introduction to The Theory of Differential Inclusions, V41