Machine Learning Methods for Multiscale Physics and Urban Engineering Problems

被引:0
作者
Sharma, Somya [1 ]
Thompson, Marten [2 ]
Laefer, Debra [3 ]
Lawler, Michael [4 ]
McIlhany, Kevin [5 ]
Pauluis, Olivier [6 ]
Trinkle, Dallas R. [7 ]
Chatterjee, Snigdhansu [2 ]
机构
[1] Univ Minnesota Twin Cities, Dept Comp Sci & Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota Twin Cities, Sch Stat, 313 Ford Hall,224 Church St SE, Minneapolis, MN 55455 USA
[3] New York Univ, Dept Civil & Urban Engn, Rogers Hall RH 411, Brooklyn, NY 11201 USA
[4] Binghamton Univ, Dept Phys Appl Phys & Astron, 4400 Vestal Pkwy East, Binghamton, NY 13902 USA
[5] US Naval Acad, Dept Phys, 572 Holloway Rd m s 9c, Annapolis, MD 21402 USA
[6] New York Univ, Courant Inst Math Sci, 251Mercer St, New York, NY 10012 USA
[7] Univ Illinois, Dept Mat Sci & Engn, 201 Mat Sci & Engn Bldg,1304 W Green St MC 246, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
spin ice; approximate Hamiltonian; molecular dynamics; moist atmosphere dynamics; urban engineering; hybrid approach; time evolution; dimension reduction; multi-resolution Gaussian Process; approximate Bayesian computation; EMBEDDED-ATOM METHOD; DYNAMIC-MODE DECOMPOSITION; EQUATION-OF-STATE; INTERATOMIC POTENTIALS; GAUSSIAN-PROCESSES; NEURAL-NETWORKS; MONTE-CARLO; SYSTEMS; LIDAR; OPTIMIZATION;
D O I
10.3390/e24081134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an overview of four challenging research areas in multiscale physics and engineering as well as four data science topics that may be developed for addressing these challenges. We focus on multiscale spatiotemporal problems in light of the importance of understanding the accompanying scientific processes and engineering ideas, where "multiscale" refers to concurrent, non-trivial and coupled models over scales separated by orders of magnitude in either space, time, energy, momenta, or any other relevant parameter. Specifically, we consider problems where the data may be obtained at various resolutions; analyzing such data and constructing coupled models led to open research questions in various applications of data science. Numeric studies are reported for one of the data science techniques discussed here for illustration, namely, on approximate Bayesian computations.
引用
收藏
页数:45
相关论文
共 196 条
[1]   Voxel Change: Big Data-Based Change Detection for Aerial Urban LiDAR of Unequal Densities [J].
Aljumaily, Harith ;
Laefer, Debra F. ;
Cuadra, Dolores ;
Velasco, Manuel .
JOURNAL OF SURVEYING ENGINEERING, 2021, 147 (04)
[2]  
Allen M.P., 1989, Comput. Simul. Liq., DOI [DOI 10.1093/OSO/9780198803195.003.0013, DOI 10.1063/1.2810937]
[3]   A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations [J].
Almgren, AS ;
Bell, JB ;
Colella, P ;
Howell, LH ;
Welcome, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 142 (01) :1-46
[4]   ORDERING AND ANTIFERROMAGNETISM IN FERRITES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1956, 102 (04) :1008-1013
[5]   Spin-glass transition in geometrically frustrated antiferromagnets with weak disorder [J].
Andreanov, A. ;
Chalker, J. T. ;
Saunders, T. E. ;
Sherrington, D. .
PHYSICAL REVIEW B, 2010, 81 (01)
[6]   Octree-based region growing for point cloud segmentation [J].
Anh-Vu Vo ;
Linh Truong-Hong ;
Laefer, Debra F. ;
Bertolotto, Michela .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 104 :88-100
[7]  
[Anonymous], 2014, Chapman & Hall/CRC Texts in Statistical Science, DOI DOI 10.1201/B16018
[8]  
[Anonymous], 2017, 2015 aerial laser and photogrammetry survey of Dublin city collection record.
[9]  
[Anonymous], 2005, QUANT MECH MATH NONL
[10]  
[Anonymous], 1990, Texts Appl. Math., DOI [10.1007/978-1-4757-4067-7, DOI 10.1007/978-1-4757-4067-7]