Parameter-Elliptic Fourier Multipliers Systems and Generation of Analytic and C∞ Semigroups

被引:0
作者
Martinez, Bienvenido Barraza [1 ]
Ospino, Jonathan Gonzalez [1 ]
Acuna, Rogelio Grau [1 ]
Monzon, Jairo Hernandez [1 ]
机构
[1] Univ Norte, Dept Matemat & Estadist, Barranquilla, Colombia
关键词
C-infinity-semigroups; analytic semigroups; Fourier multipliers; -ellipticity; PSEUDODIFFERENTIAL-OPERATORS; REGULARITY;
D O I
10.3390/math10050751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Fourier multiplier systems on R-n with components belonging to the standard Hormander class S-1,0(m) (R-n), but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector lambda & SUB;C (introduced by Denk, Saal, and Seiler) we show the generation of both C-& INFIN; semigroups and analytic semigroups (in a particular case) on the Sobolev spaces W-p(k & nbsp;)(R-n,C-q) with k & ISIN;N-0, 1 & LE;p <& INFIN; and q & ISIN;N. For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.
引用
收藏
页数:19
相关论文
empty
未找到相关数据