Improvement in Mechanical Properties of 3D-Printed PEEK Structure by Nonsolvent Vapor Annealing

被引:22
|
作者
Chen, Wenhui [1 ,2 ]
Zhang, Xiaolong [1 ,2 ]
Tan, Di [1 ,2 ]
Xu, Peng [1 ,2 ]
Yang, Baisong [1 ,2 ]
Shi, Kui [1 ,2 ]
Zhu, Bo [1 ,2 ]
Liu, Quan [1 ,2 ]
Lei, Yifeng [1 ,2 ]
Liu, Sheng [1 ,2 ]
Xue, Longjian [1 ,2 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, 8 South Donghu Rd, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Inst Technol Sci, 8 South Donghu Rd, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
3D printing; mechanical property; poly-ether-ether-ketone (PEEK); post-processing; solvent vapor annealing; MELTING BEHAVIOR; SOLVENT; POLYMER; PERFORMANCE; CRYSTALLIZATION; TOUGH; PARTS;
D O I
10.1002/marc.202100874
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The broad applications of 3D-printed poly-ether-ether-ketone (3D-PEEK) structures are largely hampered by their inadequate mechanical properties that can be improved by post treatments. At present, thermal annealing is generally used to improve the mechanical properties of 3D-PEEK. However, it cannot simultaneously improve strength and ductility. Here, a cost-effective postprocessing method is developed to improve the mechanical properties of 3D-PEEK, based on annealing in nonsolvent vapor at room temperature. The annealing in nonsolvent vapor at room temperature simultaneously improves the strength, ductility, and fracture energy of as-printed 3D-PEEK by 22.6%, 151.3%, and 109.1%, respectively. The improved mechanical properties are attributed to enhanced interfacial bonding, increased crystallinity, decreased pinhole defects, and stress relaxation in the 3D-PEEK. Moreover, the annealing in both polar solvents (such as acetone and chloroform) and nonpolar solvents (such as n-hexane) are demonstrated to be effective for improving the mechanical properties of 3D-PEEK. The nonsolvent vapor-annealed 3D-PEEK can thus have potential applications in the fields of medical implants, automotive, aerospace, and more.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Effect of annealing treatment and infill percentage on 3D-printed PEEK samples by Fused Filament Fabrication
    Erika Lannunziata
    Giovanna Colucci
    Paolo Minetola
    Alberto Giubilini
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 5209 - 5222
  • [22] Anisotropy in mechanical properties of 3D-printed layered concrete
    Slavcheva, G. S.
    Levchenko, A. V.
    Shvedova, M. A.
    Karakchi-ogly, D. R.
    Babenko, D. S.
    MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (03):
  • [23] Mechanical Properties of 3D-Printed Occlusal Splint Materials
    Prpic, Vladimir
    Spehar, Filipa
    Stajdohar, Dominik
    Bjelica, Roko
    Cimic, Samir
    Par, Matej
    DENTISTRY JOURNAL, 2023, 11 (08)
  • [24] GEOMETRY AND MECHANICAL PROPERTIES OF A 3D-PRINTED TITANIUM MICROSTRUCTURE
    Rehounek, Lubos
    Hajkova, Petra
    Vakrcka, Petr
    Jira, Ales
    9TH ANNUAL CONFERENCE NANO & MACRO MECHANICS 2018, 2018, 15 : 104 - 108
  • [25] Mechanical properties and deformation curves of the 3D-printed polycarbonate
    Andrianov, I. K.
    Feoktistov, S. I.
    MATERIALS PHYSICS AND MECHANICS, 2023, 51 (01): : 108 - 118
  • [26] Mechanical and Thermal Properties of 3D-Printed Thermosets by Stereolithography
    Park, Sungmin
    Smallwood, Anna M.
    Ryu, Chang Y.
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2019, 32 (02) : 227 - 232
  • [27] The Effect of Size on the Mechanical Properties of 3D-Printed Polymers
    Sadaghian, Hamed
    Dadmand, Behrooz
    Pourbaba, Majid
    Jabbari, Soheil
    Yeon, Jung Heum
    SUSTAINABILITY, 2024, 16 (01)
  • [28] 390 Assessing Biocompatibility & Mechanical Testing of 3D-Printed PEEK Versus Milled PEEK in Maxillofacial Surgical Applications
    Limaye, N.
    Veschini, L.
    Coward, T.
    BRITISH JOURNAL OF SURGERY, 2022, 109 (SUPPL 6)
  • [29] Mechanical Properties of 3D-Printed Lattice Cylindrical Structure with Recyclable Elastomeric and Thermoplastic Polymers
    Sood, Mohit
    Wu, Chang-Mou
    Yang, Yun-Cheng
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (09) : 4196 - 4212
  • [30] Effect of Lattice Structure and Composite Precursor on Mechanical Properties of 3D-Printed Bone Scaffolds
    Shams, M.
    Mansurov, Z.
    Daulbayev, C.
    Bakbolat, B.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2021, 23 (04) : 257 - 266