Electrochemical performance of Si/CeO2/Polyaniline composites as anode materials for lithium ion batteries

被引:19
作者
Bai, Ying [1 ,2 ]
Tang, Yang [1 ]
Wang, Zhihui [2 ]
Jia, Zhe [2 ]
Wu, Feng [1 ]
Wu, Chuan [1 ]
Liu, Gao [2 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Lithium ion batteries; Anode material; Silicon; Composite; Electrochemical performance; Lithium ion diffusion coefficient; STORAGE PERFORMANCE; SI NANOPARTICLES; RATE CAPABILITY; THIN-FILMS; GRAPHENE; SILICON; NANOCOMPOSITE; STABILITY; CARBON; CAPACITY;
D O I
10.1016/j.ssi.2014.12.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si has very high theoretical specific capacity as an anode material in a lithium ion battery. However, its application is seriously restricted because of relatively undesirable conductivity and poor cycling stability. Here we report Si/CeO2/Polyaniline (SCP) composite as an anode material, which was synthesized by hydrothermal reaction and chemical polymerization. The structures and morphologies of the SCP composites are characterized by X-ray diffraction (XCRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). It is shown that Si/CeO2 (SC) particles are well coated by PANI elastomer which has good electrical conductivity. The SCP shows larger reversible capacity and better cycling performance compared with pure Si. The first reason is that CeO2 can protect Si from reacting with electrolyte. More importantly, the PANI elastomer can accommodate the volume change of the composite during Li-alloying/dealloying processes, so the pulverization of silicon would be significantly reduced. The SCP material can retain a capacity nearly 775 mAh/g after 100 cycles, while pure Si only shows a capacity of 370 mAh/g after 100 cycles. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 29
页数:6
相关论文
共 36 条
[1]   Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries [J].
Arumugam, D. ;
Kalaignan, G. Paruthimal .
ELECTROCHIMICA ACTA, 2010, 55 (28) :8709-8716
[2]   Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles [J].
Chen, Dongyun ;
Mei, Xiao ;
Ji, Ge ;
Lu, Meihua ;
Xie, Jianping ;
Lu, Jianmei ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (10) :2409-2413
[3]  
Chen M, 2012, INT J ELECTROCHEM SC, V7, P819
[4]   Green Synthesis and Stable Li-Storage Performance of FeSi2/Si@C Nanocomposite for Lithium-Ion Batteries [J].
Chen, Yao ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Yang, Hanxi ;
Ai, Xinping .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3753-3758
[5]   Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries [J].
Cheng, Hua ;
Xiao, Ran ;
Bian, Haidong ;
Li, Zhe ;
Zhan, Yawen ;
Tsang, Chun Kwan ;
Chung, C. Y. ;
Lu, Zhouguang ;
Li, Yang Yang .
MATERIALS CHEMISTRY AND PHYSICS, 2014, 144 (1-2) :25-30
[6]   One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials [J].
Choi, Nam-Soon ;
Yao, Yan ;
Cui, Yi ;
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9825-9840
[7]   Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 165 (01) :368-378
[8]   A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance [J].
de Guzman, Rhet C. ;
Yang, Jinho ;
Ming-Cheng, Mark ;
Salley, Steven O. ;
Ng, K. Y. Simon .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (14) :4823-4833
[9]   Nanostructured Ni3.5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries [J].
Edfouf, Z. ;
Fariaut-Georges, C. ;
Cuevas, F. ;
Latroche, M. ;
Hezeque, T. ;
Caillon, G. ;
Jordy, C. ;
Sougrati, M. T. ;
Jumas, J. C. .
ELECTROCHIMICA ACTA, 2013, 89 :365-371
[10]   Nanostructured Si/Sn-Ni/C composite as negative electrode for Li-ion batteries [J].
Edfouf, Z. ;
Cuevas, F. ;
Latroche, M. ;
Georges, C. ;
Jordy, C. ;
Hezeque, T. ;
Caillon, G. ;
Jumas, J. C. ;
Sougrati, M. T. .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4762-4768