Transcendence in positive characteristic and special values of hypergeometric functions
被引:3
|
作者:
Thakur, Dinesh S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Math, Tucson, AZ 85721 USAUniv Arizona, Dept Math, Tucson, AZ 85721 USA
Thakur, Dinesh S.
[1
]
Wen, Zhi-Ying
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math, Beijing 100084, Peoples R ChinaUniv Arizona, Dept Math, Tucson, AZ 85721 USA
Wen, Zhi-Ying
[2
]
Yao, Jia-Yan
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math, Beijing 100084, Peoples R ChinaUniv Arizona, Dept Math, Tucson, AZ 85721 USA
Yao, Jia-Yan
[2
]
Zhao, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math, Beijing 100084, Peoples R ChinaUniv Arizona, Dept Math, Tucson, AZ 85721 USA
Zhao, Liang
[2
]
机构:
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2011年
/
657卷
基金:
中国国家自然科学基金;
关键词:
GOSS GAMMA-FUNCTION;
FUNCTION-FIELDS;
CRITERION;
D O I:
10.1515/CRELLE.2011.055
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove a simple transcendence criterion suitable for function field arithmetic. We apply it to show the transcendence of special values at non-zero rational arguments (or more generally, at algebraic arguments which generate extension of the rational function field with less than q places at infinity) of the entire hypergeometric functions in the function field (over F(q)) context, and to obtain a new proof of the transcendence of special values at non-natural p-adic integers of the Carlitz-Goss gamma function. We also characterize in the balanced case the algebraicity of hypergeometric functions, giving an analog of the result of F. R. Villegas, based on Beukers-Heckman results and E. Landau's method in the classical hypergeometric case.