Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach

被引:49
作者
Giannopoulos, G. I. [1 ]
Liosatos, I. A. [1 ]
Moukanidis, A. K. [1 ]
机构
[1] Technol Educ Inst Patras, Mat Sci Lab, Dept Mech Engn, Patras 26334, Greece
关键词
MOLECULAR-MECHANICS; CARBON NANOTUBES; FORCE-FIELD;
D O I
10.1016/j.physe.2011.08.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The elastic mechanical behavior of different sized zigzag and armchair graphene nanoribbons is numerically investigated and predicted using a new structural mechanic approach. According to the proposed method three dimensional, two nodded spring elements of three degrees of freedom per node, which remain straight when deformed, are combined in order to simulate realistically the interatomic interactions appearing within the graphene nanostructure. The computed variations of mechanical elastic properties are fitted by appropriate size dependent non-linear functions of two independent variables i.e. length and width, in order to express the analytical rules governing the elastic behavior of graphene nanoribbons within specific dimension limits. The numerical results, which are compared with corresponding data given in the open literature, demonstrate thoroughly the important influence of size and chirality of a narrow graphene monolayer on its elastic behavior. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 20 条
[1]   Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule [J].
Arroyo, M ;
Belytschko, T .
PHYSICAL REVIEW B, 2004, 69 (11)
[2]   Atomistic simulations of mechanical properties of graphene nanoribbons [J].
Bu, Hao ;
Chen, Yunfei ;
Zou, Min ;
Yi, Hong ;
Bi, Kedong ;
Ni, Zhonghua .
PHYSICS LETTERS A, 2009, 373 (37) :3359-3362
[3]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[4]  
Gelin B.R., 1994, Molecular Modeling of Polymer Structures and Properties
[5]   Size-dependent non-linear mechanical properties of graphene nanoribbons [J].
Georgantzinos, S. K. ;
Giannopoulos, G. I. ;
Katsareas, D. E. ;
Kakavas, P. A. ;
Anifantis, N. K. .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) :2057-2062
[6]   Numerical investigation of elastic mechanical properties of graphene structures [J].
Georgantzinos, S. K. ;
Giannopoulos, G. I. ;
Anifantis, N. K. .
MATERIALS & DESIGN, 2010, 31 (10) :4646-4654
[7]   Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J].
Kosynkin, Dmitry V. ;
Higginbotham, Amanda L. ;
Sinitskii, Alexander ;
Lomeda, Jay R. ;
Dimiev, Ayrat ;
Price, B. Katherine ;
Tour, James M. .
NATURE, 2009, 458 (7240) :872-U5
[8]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[9]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[10]   Ab initio calculation of ideal strength and phonon instability of graphene under tension [J].
Liu, Fang ;
Ming, Pingbing ;
Li, Ju .
PHYSICAL REVIEW B, 2007, 76 (06)