Mitigating Thermal Runaway of Lithium-Ion Batteries

被引:1133
作者
Feng, Xuning [1 ,2 ]
Ren, Dongsheng [2 ]
He, Xiangming [1 ]
Ouyang, Minggao [2 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
INTERNAL SHORT-CIRCUIT; LI-ION; PROPAGATION MODEL; ELECTRIC VEHICLES; TEMPERATURE; IMPACT; PACK; ELECTROLYTES; MECHANISMS; SHUTDOWN;
D O I
10.1016/j.joule.2020.02.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper summarizes the mitigation strategies for the thermal runaway of lithium-ion batteries. The mitigation strategies function at the material level, cell level, and system level. A time-sequence map with states and flows that describe the evolution of the physical and/or chemical processes has been proposed to interpret themechanisms, both at the cell level and at the system level. At the cell level, the time-sequence map helps clarify the relationship between thermal runaway and fire. At the system level, the time-sequence map depicts the relationship between the expected thermal runaway propagation and the undesired fire pathway. Mitigation strategies are fulfilled by cutting off a specific transformation flow between the states in the time sequence map. The abuse conditions that may trigger thermal runaway are also summarized for the complete protection of lithium-ion batteries. This perspective provides directions for guaranteeing the safety of lithium-ion batteries for electrical energy storage applications in the future.
引用
收藏
页码:743 / 770
页数:28
相关论文
共 78 条
[1]  
[Anonymous], 2019, BATTERIES BASEL, DOI DOI 10.3390/BATTERIES5010019
[2]   Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles [J].
Arora, Shashank ;
Shen, Weixiang ;
Kapoor, Ajay .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :1319-1331
[3]   Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres [J].
Baginska, Marta ;
Blaiszik, Benjamin J. ;
Merriman, Ryan J. ;
Sottos, Nancy R. ;
Moore, Jeffrey S. ;
White, Scott R. .
ADVANCED ENERGY MATERIALS, 2012, 2 (05) :583-590
[4]   Thermal runaway and thermal runaway propagation in batteries: What do we talk about? [J].
Boerger, Alexander ;
Mertens, Jan ;
Wenzl, Heinz .
JOURNAL OF ENERGY STORAGE, 2019, 24
[5]  
Byun S.W., 2016, U.S Patent, Patent No. [14/732,484, 14732484]
[6]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[7]   High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Yu, Lu ;
Ren, Xiaodi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Xu, Wu ;
Xiao, Jie ;
Liu, Jun ;
Zhang, Ji-Guang .
JOULE, 2018, 2 (08) :1548-1558
[8]  
Chen Z, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2015.9, 10.1038/nenergy.2015.9]
[9]   A control-oriented electrochemical model for lithium-ion battery. Part II: Parameter identification based on reference electrode [J].
Chu, Zhengyu ;
Jobman, Ryan ;
Rodriguez, Albert ;
Plett, Gregory L. ;
Trimboli, M. Scott ;
Feng, Xuning ;
Ouyang, Minggao .
JOURNAL OF ENERGY STORAGE, 2020, 27
[10]   Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model [J].
Chu, Zhengyu ;
Feng, Xuning ;
Lu, Languang ;
Li, Jianqiu ;
Han, Xuebing ;
Ouyang, Minggao .
APPLIED ENERGY, 2017, 204 :1240-1250