Improved performance of CdTe solar cells with CdS treatment

被引:27
作者
Li, Hui [1 ]
Liu, Xiangxin [1 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Key Lab Solar Thermal Energy & Photovolta Syst, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
CdS cooling process; CdTe solar cells; Radio-frequency magnetron sputtering; Thin-film solar cells; THIN-FILMS; ATMOSPHERES;
D O I
10.1016/j.solener.2015.02.044
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CdTe thin-film solar cells are usually composed of n-CdS/p-CdTe. The treatment of CdS in the magnetron chamber prior to radio-frequency magnetron sputtering of CdTe had a significant effect on the properties of CdTe solar cells. We found that a CdS cooling and reheating process prior to CdTe deposition had a significant effect on the energy conversion efficiency and open circuit voltage of CdTe solar cells. Without cooling and reheating CdS before CdTe deposition, the energy conversion efficiency and open circuit voltage of the CdTe solar cell only reached 12.0 +/- 0.5% and 759 +/- 1 mV, respectively. However, the energy conversion efficiency and open circuit voltage of the CdTe solar cell with a CdS cooling and reheating process before CdTe deposition were 13.3 +/- 0.3% and 828 +/- 1 mV, respectively. CdS films after the cooling and reheating process had larger grains, superior crystalline quality, and a higher S/Cd atomic ratio compared with films that did not undergo a CdS cooling and reheating process. CdTe grown on CdS with a cooling and reheating process had the largest grain size after chloride treatment. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 33 条
[1]   Study of the CdS crystal evaporation kinetics by laser step atomic photoionization [J].
Adzhimambetov, RR ;
Muzhdabaev, IS ;
Tursunov, AT ;
Khalilov, ÉÉ .
TECHNICAL PHYSICS, 2003, 48 (08) :1020-1023
[2]   THIN-FILM CDS/CDTE SOLAR-CELL WITH 15.8-PERCENT EFFICIENCY [J].
BRITT, J ;
FEREKIDES, C .
APPLIED PHYSICS LETTERS, 1993, 62 (22) :2851-2852
[3]   Laser beam induced current measurements of Cd1-xZnxS/CdTe solar cells [J].
Brooks, W. S. M. ;
Irvine, S. J. C. ;
Barrioz, V. ;
Clayton, A. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 :26-31
[4]   Microstructural and physical variations in CdS films submitted to heat treatment in the presence of CdCl2 [J].
Caboclo, G. D. ;
Fernandes, J. A. S. ;
Pinheiro, W. A. ;
Cruz, L. R. .
MATERIA-RIO DE JANEIRO, 2011, 16 (01) :606-612
[5]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/nmat3122, 10.1038/NMAT3122]
[6]   MOCVD of Cd(1-x)Zn(x)S/CdTe PV cells using an ultra-thin absorber layer [J].
Clayton, A. J. ;
Irvine, S. J. C. ;
Jones, E. W. ;
Kartopu, G. ;
Barrioz, V. ;
Brooks, W. S. M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 :68-72
[7]   Ab-initio local density approximation description of the electronic properties of zinc blende cadmium sulfide (zb-CdS) [J].
Ekuma, E. C. ;
Franklin, L. ;
Zhao, G. L. ;
Wang, J. T. ;
Bagayoko, D. .
PHYSICA B-CONDENSED MATTER, 2011, 406 (08) :1477-1480
[8]   CDTE SOLAR-CELLS WITH EFFICIENCIES OVER 15-PERCENT [J].
FEREKIDES, C ;
BRITT, J .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1994, 35 (1-4) :255-262
[9]   Solar cell efficiency tables (version 41) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :1-11
[10]   CdS annealing treatments in various atmospheres and effects on performances of CdTe/CdS solar cells [J].
Han Jun-feng ;
Fu Gan-hua ;
Krishnakumar, V. ;
Liao Cheng ;
Jaegermann, Wolfram .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2013, 24 (08) :2695-2700