Hyperentropic systems and the generalized second law of thermodynamics

被引:7
作者
Hod, Shahar [1 ,2 ]
机构
[1] Hadassah Inst, IL-91010 Jerusalem, Israel
[2] Ruppin Acad Ctr, IL-40250 Emek Hefer, Israel
关键词
Holographic principle; Black holes; Entropy; BLACK-HOLES; INFORMATION-THEORY;
D O I
10.1016/j.physletb.2011.04.048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The holographic bound asserts that the entropy S of a system is bounded from above by a quarter of the area A of a circumscribing surface measured in Planck areas: S <= A/4l(P)(2). This bound is widely regarded a desideratum of any fundamental theory. Moreover, it was argued that the holographic bound is necessary for the validity of the generalized second law (GSL) of thermodynamics. However, in this work we explicitly show that hyperentropic systems (those violating the holographic entropy bound) do exist in higher-dimensional spacetimes. We resolve this apparent violation of the GSL and derive an upper bound on the area of hyperentropic objects. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 34 条
[1]   Resolution of an apparent inconsistency in the electromagnetic Casimir effect [J].
Alnes, H. ;
Olaussen, K. ;
Ravndal, F. ;
Wehus, I. K. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (17) :F315-F320
[2]  
[Anonymous], 1990, Int. J. Mod. Phys. C
[3]  
Bekenstein JD, 2000, PHYS REV D, V61, DOI 10.1103/PhysRevD.61.024022
[4]   How does the entropy/information bound work? [J].
Bekenstein, JD .
FOUNDATIONS OF PHYSICS, 2005, 35 (11) :1805-1823
[5]   ENTROPY BOUNDS AND BLACK-HOLE REMNANTS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1994, 49 (04) :1912-1921
[6]   UNIVERSAL UPPER BOUND ON THE ENTROPY-TO-ENERGY RATIO FOR BOUNDED SYSTEMS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1981, 23 (02) :287-298
[7]   Black holes and information theory [J].
Bekenstein, JD .
CONTEMPORARY PHYSICS, 2004, 45 (01) :31-43
[8]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[9]   Holographic bound from second law of thermodynamics [J].
Bekenstein, JD .
PHYSICS LETTERS B, 2000, 481 (2-4) :339-345
[10]  
BEKENSTEIN JD, 2002, 9 MARC GROSSM M REC, P553