On Hochstadt-Lieberman theorem for impulsive Sturm-Liouville problems with boundary conditions polynomially dependent on the spectral parameter

被引:10
作者
Mosazadeh, Seyfollah [1 ]
Akbarfam, Aliasghar Jodayree [2 ]
机构
[1] Univ Kashan, Fac Math Sci, Dept Pure Math, Kashan, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Sturm-Liouville problem; interior discontinuities; Hochstadt-Lieberman theorem; boundary conditions polynomially dependent on the spectral parameter; TRANSMISSION; UNIQUENESS;
D O I
10.3906/mat-1807-77
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we consider an inverse problem for the Sturm-Liouville operator with a finite number of discontinuities at interior points and boundary conditions polynomially dependent on the spectral parameter on an arbitrary finite interval, and prove the Hochstadt-Lieberman-type theorem for this problem.
引用
收藏
页码:3002 / 3009
页数:8
相关论文
共 21 条
[1]  
Albeverio S., 2005, Solvable models in quantum mechanics, V2
[2]   EFFECT OF DISCONTINUITIES IN DENSITY AND SHEAR VELOCITY ON ASYMPTOTIC OVERTONE STRUCTURE OF TORSIONAL EIGENFREQUENCIES OF EARTH [J].
ANDERSSEN, RS .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 50 (02) :303-309
[3]  
[Anonymous], 2011, FAR E J APPL MATH
[4]   Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter [J].
Freiling, G. ;
Yurko, V. A. .
INVERSE PROBLEMS, 2010, 26 (05)
[5]  
Freiling G., 2001, INVERSE STURM LIOUVI
[6]   Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2765-2787
[7]   DISCONTINUOUS INVERSE EIGENVALUE PROBLEMS [J].
HALD, OH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (05) :539-577
[8]   INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA [J].
HOCHSTADT, H ;
LIEBERMAN, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (04) :676-680
[9]  
Keskin B., 2017, Adv. Anal., V2, P151, DOI DOI 10.22606/AAN.2017.23002
[10]   A UNIQUENESS PROOF FOR DISCONTINUOUS INVERSE STURM-LIOUVILLE PROBLEMS WITH SYMMETRIC-POTENTIALS [J].
KOBAYASHI, M .
INVERSE PROBLEMS, 1989, 5 (05) :767-781