Numerical analysis of nanowire surface recombination using a three-dimensional transient model

被引:0
作者
Ren, Dingkun [1 ]
Rong, Zixuan [1 ]
Liang, Baolai [2 ]
Huffaker, Diana L. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
来源
QUANTUM DOTS AND NANOSTRUCTURES: GROWTH, CHARACTERIZATION, AND MODELING XV | 2018年 / 10543卷
基金
美国国家科学基金会;
关键词
Nanowire; III-V; TRPL; lifetime; surface recombination; transient; 3-D; numerical modeling; PASSIVATION; GAAS; INP;
D O I
10.1117/12.2295768
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To characterize surface recombination of nanowires, time-resolved photoluminescence (TRPL) is commonly implemented to correlate measured lifetime with the nonradiative effect at surface. In this work, we develop a three-dimensional transient model to perform a numerical analysis of surface recombination for InGaAs nanowires on GaAs substrates. By mimicking a complete TRPL measurement process, we computationally calculate optical generation and emission of InGaAs nanowires, and numerically probe the carrier dynamics inside nanowires. It is found that the TRPL spectra are determined by a complex convolution of surface recombination velocity and incident wavelengths. In addition, we show that due to the three-dimensional geometry of nanowire, using a typical analytical equation to extract surface recombination velocity might be no longer valid. We believe these results provide an alternative approach for the computational analysis of TRPL measurements and surface properties for three-dimensional nanostructured devices.
引用
收藏
页数:7
相关论文
共 10 条
[2]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[3]   Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer [J].
Black, L. E. ;
Cavalli, A. ;
Verheijen, M. A. ;
Haverkort, J. E. M. ;
Bakkers, E. P. A. M. ;
Kessels, W. M. M. .
NANO LETTERS, 2017, 17 (10) :6287-6294
[4]   Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires [J].
Chang, Chia-Chi ;
Chi, Chun-Yung ;
Yao, Maoqing ;
Huang, Ningfeng ;
Chen, Chun-Chung ;
Theiss, Jesse ;
Bushmaker, Adam W. ;
LaLumondiere, Stephen ;
Yeh, Ting-Wei ;
Povinelli, Michelle L. ;
Zhou, Chongwu ;
Dapkus, P. Daniel ;
Cronin, Stephen B. .
NANO LETTERS, 2012, 12 (09) :4484-4489
[5]  
DAIMINGER F, 1994, P SOC PHOTO-OPT INS, V2139, P213, DOI 10.1117/12.175717
[6]   Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires [J].
Dan, Yaping ;
Seo, Kwanyong ;
Takei, Kuniharu ;
Meza, Jhim H. ;
Javey, Ali ;
Crozier, Kenneth B. .
NANO LETTERS, 2011, 11 (06) :2527-2532
[7]   Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars [J].
Higuera-Rodriguez, A. ;
Romeira, B. ;
Birindelli, S. ;
Black, L. E. ;
Smalbrugge, E. ;
van Veldhoven, P. J. ;
Kessels, W. M. M. ;
Smit, M. K. ;
Fiore, A. .
NANO LETTERS, 2017, 17 (04) :2627-2633
[8]   The role of drift, diffusion, and recombination in time-resolved photoluminescence of CdTe solar cells determined through numerical simulation [J].
Kanevce, A. ;
Levi, D. H. ;
Kuciauskas, D. .
PROGRESS IN PHOTOVOLTAICS, 2014, 22 (11) :1138-1146
[9]   GaAs nanopillar-array solar cells employing in situ surface passivation [J].
Mariani, Giacomo ;
Scofield, Adam C. ;
Hung, Chung-Hong ;
Huffaker, Diana L. .
NATURE COMMUNICATIONS, 2013, 4
[10]   Seeding layer assisted selective-area growth of As-rich InAsP nanowires on InP substrates [J].
Ren, Dingkun ;
Farrell, Alan C. ;
Williams, Benjamin S. ;
Huffaker, Diana L. .
NANOSCALE, 2017, 9 (24) :8220-8228