Singular perturbation analysis of a stationary diffusion/reaction system whose solution exhibits a corner-type behavior in the interior of the domain

被引:7
作者
Kalachev, LV
Seidman, TI [1 ]
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
singular perturbation; boundary function method; corner-type behavior; rate of convergence;
D O I
10.1016/j.jmaa.2003.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed system of second-order differential equations describing steady state of a chemical process that involves three species, two reactions (one of which is fast), and diffusion. Formal asymptotic expansion of the solution is constructed in the case when solution exhibits a corner-type behavior in the interior of the domain of interest. The theorem on estimation of the remainder is proved using a fixed point argument. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:722 / 743
页数:22
相关论文
共 6 条
  • [1] Butuzov V., 2000, NAT RESOUR MODEL, V13, P247
  • [2] Singularly perturbed boundary value problems in case of exchange of stabilities
    Butuzov, VF
    Nefedov, NN
    Schneider, KR
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) : 543 - 562
  • [3] REACTION AND DIFFUSION AT A GAS-LIQUID INTERFACE .2.
    HAARIO, H
    SEIDMAN, TI
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) : 1069 - 1084
  • [4] Protter M.H., 1967, MAXIMUM PRINCIPLE DI
  • [5] SEIDMAN TI, 1997, J MATH ANAL APPL, V289, P392
  • [6] Vasil'eva A.B., 1995, BOUNDARY FUNCTION ME