Parameters optimization applying Monte Carlo methods and Evolutionary Algorithms. Enforcement to a trajectory tracking controller in non-linear systems

被引:0
作者
Fernandez, C. [1 ]
Pantano, N. [1 ]
Godoy, S. [1 ]
Serrano, E. [1 ]
Scaglia, G. [1 ]
机构
[1] Univ Nacl San Juan, Inst Ingn Quim, CONICET, Av Lib San Martin Oeste 1109,San Juan J5400ARL, San Juan, Argentina
来源
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL | 2019年 / 16卷 / 01期
关键词
Closed loop control; nonlinear systems; multivariable control systems; Monte Carlo method; Genetic Algorithms; FED-BATCH BIOREACTORS; MODEL-PREDICTIVE CONTROL; GENETIC ALGORITHM; NEURAL-NETWORK; FERMENTATION PROCESSES; POWER; EFFICIENCY; DYNAMICS; CULTURES; DESIGN;
D O I
10.4995/riai.2018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a closed-loop control strategy is proposed. It allows tracking optimal profiles for a fed-batch bioprocess. The main advantage of this approach is that the control actions are computed from a linear equations system without linearizing the mathematical model, which allows working in any range. In addition, three techniques are developed to tune the controller. First, a completely probabilistic method, Monte Carlo. Second, a methodology based on Genetic Algorithms, an evolutionary optimization technique. Third, a Hybrid Algorithm, combining above algorithms advantages. Here, the objective function is to find the controller parameters that minimize the trajectory tracking total error. The controller performance is evaluated through simulations under normal operations conditions and parametric uncertainty, using the obtained controller parameters.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 49 条
  • [1] Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application
    Asadi, Ehsan
    da Silva, Manuel Gameiro
    Antunes, Carlos Henggeler
    Dias, Luis
    Glicksman, Leon
    [J]. ENERGY AND BUILDINGS, 2014, 81 : 444 - 456
  • [2] Optimal control of a nonlinear fed-batch fermentation process using model predictive approach
    Ashoori, Ahmad
    Moshiri, Behzad
    Khaki-Sedigh, Ali
    Bakhtiari, Mohammad Reza
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (07) : 1162 - 1173
  • [3] Minimal time control of fed-batch bioreactor with product inhibition
    Bayen, Terence
    Mairet, Francis
    [J]. BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2013, 36 (10) : 1485 - 1496
  • [4] Software sensors for bioprocesses
    Bogaerts, P
    Vande Wouwer, A
    [J]. ISA TRANSACTIONS, 2003, 42 (04) : 547 - 558
  • [5] Robust nonlinear state estimation of bioreactors based on H∞ hybrid observers
    Bogaerts, Ph
    Coutinho, D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 : 315 - 328
  • [6] A New Approach for Nonlinear Multivariable Fed-Batch Bioprocess Trajectory Tracking Control
    Fernández M.C.
    Rómoli S.
    Pantano M.N.
    Ortiz O.A.
    Patiño D.
    Scaglia G.J.E.
    [J]. Automatic Control and Computer Sciences, 2018, 52 (1) : 13 - 24
  • [7] The snowball effect in fed-batch bioreactions
    Chang, DM
    [J]. BIOTECHNOLOGY PROGRESS, 2003, 19 (03) : 1064 - 1070
  • [8] Multiple-model control strategy for a fed-batch high cell-density culture processing
    Chung, YC
    Chien, IL
    Chang, DM
    [J]. JOURNAL OF PROCESS CONTROL, 2006, 16 (01) : 9 - 26
  • [9] Nonlinear fuzzy control of a fed-batch reactor for penicillin production
    Cosenza, Bartolomeo
    Galluzzo, Mose
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2012, 36 : 273 - 281
  • [10] Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller
    Craven, Stephen
    Whelan, Jessica
    Glennon, Brian
    [J]. JOURNAL OF PROCESS CONTROL, 2014, 24 (04) : 344 - 357