Genomics and the evolution of aminoacyl-tRNA synthesis

被引:0
|
作者
Ruan, BF
Ahel, I
Ambrogelly, A
Becker, HD
Bunjun, S
Feng, L
Tumbula-Hansen, D
Ibba, M
Korencic, D
Kobayashi, H
Jacquin-Becker, C
Mejlhede, N
Min, B
Raczniak, G
Rinehart, J
Stathopoulos, C
Li, T
Söll, D
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Chem, New Haven, CT USA
[3] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT USA
[4] Panum Inst, Dept Med Biochem & Genet, Ctr Biomol Recognit, Lab B, Copenhagen, Denmark
关键词
aminoacyl-tRNA; evolution; protein synthesis; tRNA; translation;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA(mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [31] Aminoacyl-tRNA synthetase complexes: beyond translation
    Lee, SW
    Cho, BH
    Park, SG
    Kim, S
    JOURNAL OF CELL SCIENCE, 2004, 117 (17) : 3725 - 3734
  • [32] Common Peptides Study of Aminoacyl-tRNA Synthetases
    Gottlieb, Assaf
    Frenkel-Morgenstern, Milana
    Safro, Mark
    Horn, David
    PLOS ONE, 2011, 6 (05):
  • [33] Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases
    Warren, Nicholas
    Strom, Alexander
    Nicolet, Brianna
    Albin, Kristine
    Albrecht, Joshua
    Bausch, Brenna
    Dobbe, Megan
    Dudek, Megan
    Firgens, Samuel
    Fritsche, Chad
    Gunderson, Anthony
    Heimann, Joseph
    Her, Cheng
    Hurt, Jordan
    Konorev, Dmitri
    Lively, Matthew
    Meacham, Stephanie
    Rodriguez, Valentina
    Tadayon, Stephanie
    Trcka, David
    Yang, Yer
    Bhattacharyya, Sudeep
    Hati, Sanchita
    PROTEIN JOURNAL, 2014, 33 (02) : 184 - 198
  • [34] A rationally engineered misacylating aminoacyl-tRNA synthetase
    Bullock, Timothy L.
    Rodriguez-Hernandez, Annia
    Corigliano, Eleonora M.
    Perona, John J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (21) : 7428 - 7433
  • [35] Conformational Sampling of Aminoacyl-tRNA during Selection on the Bacterial Ribosome
    Geggier, Peter
    Dave, Richa
    Feldman, Michael B.
    Terry, Daniel S.
    Altman, Roger B.
    Munro, James B.
    Blanchard, Scott C.
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 399 (04) : 576 - 595
  • [36] Coexisting bacterial aminoacyl-tRNA synthetase paralogs exhibit distinct phylogenetic backgrounds and functional compatibility with Escherichia coli
    Radecki, Alexander A.
    Fantasia-Davis, Ariana
    Maldonado, Juan S.
    Mann, Joshua W.
    Sepulveda-Camacho, Stephanie
    Morosky, Pearl
    Douglas, Jordan
    Vargas-Rodriguez, Oscar
    IUBMB LIFE, 2024, 76 (12) : 1139 - 1153
  • [37] Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases
    Samuels, Tristan N.
    Wu, Fanqi
    Mahmood, Maria
    Abuzaid, Wajd A.
    Sun, Nancy
    Moresco, Angelica
    Siu, Victoria M.
    O'Donoghue, Patrick
    Heinemann, Ilka U.
    FEBS JOURNAL, 2024,
  • [38] Structural Disorder in Expanding the Functionome of Aminoacyl-tRNA Synthetases
    Yang, Xiang-Lei
    CHEMISTRY & BIOLOGY, 2013, 20 (09): : 1093 - 1099
  • [39] Aminoacyl-tRNA synthetase deficiencies in search of common themes
    Fuchs, Sabine A.
    Schene, Imre F.
    Kok, Gautam
    Jansen, Jurriaan M.
    Nikkels, Peter G. J.
    van Gassen, Koen L. I.
    Terheggen-Lagro, Suzanne W. J.
    van der Crabben, Saskia N.
    Hoeks, Sanne E.
    Niers, Laetitia E. M.
    Wolf, Nicole I.
    de Vries, Maaike C.
    Koolen, David A.
    Houwen, Roderick H. J.
    Mulder, Margot F.
    van Hasselt, Peter M.
    GENETICS IN MEDICINE, 2019, 21 (02) : 319 - 330
  • [40] Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer
    Wang, Justin
    Vallee, Ingrid
    Dutta, Aditi
    Wang, Yu
    Mo, Zhongying
    Liu, Ze
    Cui, Haissi
    Su, Andrew I.
    Yang, Xiang-Lei
    GENES, 2020, 11 (11) : 1 - 22