Superpixel-Based Graph Laplacian Regularization for Sparse Hyperspectral Unmixing

被引:29
|
作者
Ince, Taner [1 ]
机构
[1] Gaziantep Univ, Dept Elect & Elect Engn, TR-27310 Gaziantep, Turkey
关键词
Sparse matrices; Laplace equations; Hyperspectral imaging; Image segmentation; Libraries; Data mining; Abundance estimation; graph Laplacian; sparse unmixing (SU); superpixel; SPATIAL REGULARIZATION; REGRESSION; ALGORITHM;
D O I
10.1109/LGRS.2020.3027055
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An efficient spatial regularization method using superpixel segmentation and graph Laplacian regularization is proposed for the sparse hyperspectral unmixing method. Since it is likely to find spectrally similar pixels in a homogeneous region, we use a superpixel segmentation algorithm to extract the homogeneous regions by considering the image boundaries. We first extract the homogeneous regions, which are called superpixels, and then, a weighted graph in each superpixel is constructed by selecting nearest pixels in each superpixel. Each node in the graph represents the spectrum of a pixel, and edges connect the similar pixels inside the superpixel. The spatial similarity is investigated using the graph Laplacian regularization. Sparsity regularization for an abundance matrix is provided using a weighted sparsity promoting norm. Experimental results on simulated and real data sets show the superiority of the proposed algorithm over the well-known algorithms in the literature.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] SUPERPIXEL-GUIDED SPARSE UNMIXING FOR REMOTELY SENSED HYPERSPECTRAL IMAGERY
    Zhang, Shaoquan
    Deng, Chengzhi
    Li, Jun
    Wang, Shengqian
    Li, Fan
    Xu, Chenguang
    Plaza, Antonio
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2155 - 2158
  • [42] SUPERPIXEL BASED UNMIXING FOR ENHANCED HYPERSPECTRAL DENOISING
    Erturk, Alp
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [43] Superpixel Weighted Low-rank and Sparse Approximation for Hyperspectral Unmixing
    Ince, Taner
    Dundar, Tugcan
    Kacmaz, Seydi
    Karci, Hasari
    2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST, 2023,
  • [44] Super-resolution of hyperspectral image via superpixel-based sparse representation
    Fang, Leyuan
    Zhuo, Haijie
    Li, Shutao
    NEUROCOMPUTING, 2018, 273 : 171 - 177
  • [45] Smooth and Sparse Regularization for NMF Hyperspectral Unmixing
    Salehani, Yaser Esmaeili
    Gazor, Saeed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) : 3677 - 3692
  • [46] Four-directional spatial regularization for sparse hyperspectral unmixing
    Ahmad, Touseef
    Lyngdoh, Rosly Boy
    Sahadevan, Anand S.
    Raha, Soumyendu
    Gupta, Praveen Kumar
    Misra, Arundhati
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04):
  • [47] Pointwise Mutual Information-Based Graph Laplacian Regularized Sparse Unmixing
    Kucuk, Sefa
    Yuksel, Seniha Esen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Graph Laplacian Regularization With Sparse Coding for Image Restoration and Representation
    Sha, Lingdao
    Schonfeld, Dan
    Wang, Jing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 2000 - 2014
  • [49] SPARSE SUPERPIXEL UNMIXING FOR EXPLORATORY ANALYSIS OF CRISM HYPERSPECTRAL IMAGES
    Thompson, David R.
    Castano, Rebecca
    Gilmore, Martha S.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 303 - +
  • [50] Adaptive Spatial Regularization Sparse Unmixing Strategy Based on Joint MAP for Hyperspectral Remote Sensing Imagery
    Feng, Ruyi
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5791 - 5805