Correlation Between Anode Area and Sensitivity for the TiN/GaN Schottky Barrier Diode Temperature Sensor

被引:38
作者
Li, Xiaobo [1 ,2 ]
Pu, Taofei [1 ]
Li, Xianjie [2 ]
Li, Liuan [3 ]
Ao, Jin-Ping [1 ]
机构
[1] Tokushima Univ, Inst Sci & Technol, Tokushima 7708506, Japan
[2] BUPT, State Key Lab Informat Photon & Opt Commun, Inst Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
关键词
GaN; reactive sputtering; Schottky barrier diode (SBD); temperature sensor; TiN; GAN;
D O I
10.1109/TED.2020.2968358
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
TiN/GaN Schottky barrier diodes with different anode diameters are fabricated to investigate the temperature sensing mechanism. All the circular diodes present good stability over a temperature range of 25 degrees C-200 degrees C. In the fully turn-on region, the sensitivity increases with the increasing diameter. Furthermore, the highest sensitivity of 1.22 mV/K is obtained for a 300-mu m-diameter device at current of 20 mA, taking into account the series resistance. In the subthreshold region, the forward current (I-D) density determines the sensor sensitivity, in which a larger current density corresponds to a lower sensitivity. In addition, the strong dependence of the leakage current on the temperature indicates that the linearity of ln (I-r) versus temperature can be also used for sensor applications.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 22 条
[1]   Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking [J].
Bahat-Treidel, E. ;
Hilt, Oliver ;
Zhytnytska, Rimma ;
Wentzel, Andreas ;
Meliani, Chafik ;
Wuerfl, Joachim ;
Traenkle, Guenther .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) :357-359
[2]   Gallium nitride devices for power electronic applications [J].
Baliga, B. Jayant .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (07)
[3]   Sixteen years GaN on Si [J].
Dadgar, Armin .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (05) :1063-1068
[4]  
Dinh T, 2018, SPRINGERBR APPL SCI, P43, DOI 10.1007/978-981-13-2571-7_3
[5]   High temperature diode sensors based on InGaN/AlGaN structures [J].
Krasnov, Vasily A. ;
Shutov, Stanislav V. ;
Yerochin, Sergey Y. ;
Demenskiy, Aleksey N. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (02)
[6]   A Highly Linear Integrated Temperature Sensor on a GaN Smart Power IC Platform [J].
Kwan, Alex Man Ho ;
Guan, Yue ;
Liu, Xiaosen ;
Chen, Kevin J. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) :2970-2976
[7]   Integrated Over-Temperature Protection Circuit for GaN Smart Power ICs [J].
Kwan, Alex Man Ho ;
Guan, Yue ;
Liu, Xiaosen ;
Chen, Kevin J. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
[8]   Temperature sensor using thermally stable TiN anode GaN Schottky barrier diode for high power device application [J].
Li, Liuan ;
Chen, Jia ;
Gu, Xin ;
Li, Xiaobo ;
Pu, Taofei ;
Ao, Jin-Ping .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 123 :274-279
[9]   Electrical properties of TiN on gallium nitride grown using different deposition conditions and annealing [J].
Li, Liuan ;
Kishi, Akinori ;
Shiraishi, Takayuki ;
Jiang, Ying ;
Wang, Qingpeng ;
Ao, Jin-Ping .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2014, 32 (02)
[10]   p-NiO/n-GaN Heterostructure Diode for Temperature Sensor Application [J].
Li, Xiaobo ;
Pu, Taofei ;
Zhang, Tong ;
Li, Xianjie ;
Li, Liuan ;
Ao, Jin-Ping .
IEEE SENSORS JOURNAL, 2020, 20 (01) :62-66