Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds

被引:62
作者
Lance, S. [1 ,2 ]
Shupe, M. D. [2 ,3 ]
Feingold, G. [1 ]
Brock, C. A. [1 ]
Cozic, J. [1 ,2 ]
Holloway, J. S. [1 ,2 ]
Moore, R. H. [4 ]
Nenes, A. [4 ,5 ]
Schwarz, J. P. [1 ,2 ]
Spackman, J. R. [1 ,2 ]
Froyd, K. D. [1 ,2 ]
Murphy, D. M. [1 ]
Brioude, J. [1 ,2 ]
Cooper, O. R. [1 ,2 ]
Stohl, A. [6 ]
Burkhart, J. F. [6 ,7 ]
机构
[1] Natl Ocean & Atmospher Adm, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Natl Ocean & Atmospher Adm, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA
[4] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[6] Norwegian Inst Air Res, Kjeller, Norway
[7] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA
关键词
CONTACT NUCLEATION; RESOLVING SIMULATIONS; STRATIFORM CLOUDS; BOUNDARY-LAYERS; PART II; AEROSOL; WATER; PARTICLES; PARAMETERIZATION; CRYSTALLIZATION;
D O I
10.5194/acp-11-8003-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose that cloud condensation nuclei (CCN) concentrations are important for modulating ice formation of Arctic mixed-phase clouds, through modification of the droplet size distribution. Aircraft observations from the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in northern Alaska in April 2008 allow for identification and characterization of both aerosol and trace gas pollutants, which are then compared with cloud microphysical properties. Consistent with previous studies, we find that the concentration of precipitating ice particles (> 400 mu m) is correlated with the concentration of large droplets (> 30 mu m). We are further able to link the observed microphysical conditions to aerosol pollution, originating mainly from long range transport of biomass burning emissions. The case studies demonstrate that polluted mixed-phase clouds have narrower droplet size distributions and contain 1-2 orders of magnitude fewer precipitating ice particles than clean clouds at the same temperature. This suggests an aerosol indirect effect leading to greater cloud lifetime, greater cloud emissivity, and reduced precipitation. This result is opposite to the glaciation indirect effect, whereby polluted clouds are expected to precipitate more readily due to an increase in the concentration of particles acting as ice nuclei.
引用
收藏
页码:8003 / 8015
页数:13
相关论文
共 50 条
[41]   The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE [J].
Jackson, Robert C. ;
McFarquhar, Greg M. ;
Korolev, Alexei V. ;
Earle, Michael E. ;
Liu, Peter S. K. ;
Lawson, R. Paul ;
Brooks, Sarah ;
Wolde, Mengistu ;
Laskin, Alexander ;
Freer, Matt .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[42]   The Importance of Representing Mixed-Phase Clouds for Simulating Distinctive Atmospheric States in the Arctic [J].
Engstrom, Anders ;
Karlsson, Johannes ;
Svensson, Gunilla .
JOURNAL OF CLIMATE, 2014, 27 (01) :265-272
[43]   Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change [J].
Tan, Ivy ;
Storelvmo, Trude .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (05) :2894-2902
[44]   Contributions of Clouds, Surface Albedos, and Mixed-Phase Ice Nucleation Schemes to Arctic Radiation Biases in CAM5 [J].
English, Jason M. ;
Kay, Jennifer E. ;
Gettelman, Andrew ;
Liu, Xiaohong ;
Wang, Yong ;
Zhang, Yuying ;
Chepfer, Helene .
JOURNAL OF CLIMATE, 2014, 27 (13) :5174-5197
[45]   Turbulence as a Key Driver of Ice Aggregation and Riming in Arctic Low-Level Mixed-Phase Clouds, Revealed by Long-Term Cloud Radar Observations [J].
Chellini, Giovanni ;
Kneifel, Stefan .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
[46]   Is Black Carbon an Unimportant Ice-Nucleating Particle in Mixed-Phase Clouds? [J].
Vergara-Temprado, Jesus ;
Holden, Mark A. ;
Orton, Thomas R. ;
O'Sullivan, Daniel ;
Umo, Nsikanabasi S. ;
Browse, Jo ;
Reddington, Carly ;
Teresa Baeza-Romero, Maria ;
Jones, Jenny M. ;
Lea-Langton, Amanda ;
Williams, Alan ;
Carslaw, Ken S. ;
Murray, Benjamin J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (08) :4273-4283
[47]   Persistence of orographic mixed-phase clouds [J].
Lohmann, U. ;
Henneberger, J. ;
Henneberg, O. ;
Fugal, J. P. ;
Buehl, J. ;
Kanji, Z. A. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (19) :10512-10519
[48]   Microphysical characterization of mixed-phase clouds [J].
Korolev, AV ;
Isaac, GA ;
Cober, SG ;
Strapp, JW ;
Hallett, J .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2003, 129 (587) :39-65
[49]   Relationships between Immersion Freezing and Crystal Habit for Arctic Mixed-Phase Clouds-A Numerical Study [J].
Hashino, Tempei ;
de Boer, Gijs ;
Okamoto, Hajime ;
Tripoli, Gregory J. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (07) :2411-2438
[50]   In-situ aircraft observations of aerosol and cloud microphysical characteristics of mixed-phase clouds over the North China Plain [J].
Cui, Kun ;
Wang, Honglei ;
Ke, Yue ;
Dong, Xiaobo ;
Yang, Yang ;
Wu, Zihao ;
Liu, Sihan ;
Wang, Zihan ;
Lin, Wen ;
Zhao, Tianliang .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 949