Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds

被引:61
|
作者
Lance, S. [1 ,2 ]
Shupe, M. D. [2 ,3 ]
Feingold, G. [1 ]
Brock, C. A. [1 ]
Cozic, J. [1 ,2 ]
Holloway, J. S. [1 ,2 ]
Moore, R. H. [4 ]
Nenes, A. [4 ,5 ]
Schwarz, J. P. [1 ,2 ]
Spackman, J. R. [1 ,2 ]
Froyd, K. D. [1 ,2 ]
Murphy, D. M. [1 ]
Brioude, J. [1 ,2 ]
Cooper, O. R. [1 ,2 ]
Stohl, A. [6 ]
Burkhart, J. F. [6 ,7 ]
机构
[1] Natl Ocean & Atmospher Adm, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Natl Ocean & Atmospher Adm, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA
[4] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[6] Norwegian Inst Air Res, Kjeller, Norway
[7] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA
关键词
CONTACT NUCLEATION; RESOLVING SIMULATIONS; STRATIFORM CLOUDS; BOUNDARY-LAYERS; PART II; AEROSOL; WATER; PARTICLES; PARAMETERIZATION; CRYSTALLIZATION;
D O I
10.5194/acp-11-8003-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose that cloud condensation nuclei (CCN) concentrations are important for modulating ice formation of Arctic mixed-phase clouds, through modification of the droplet size distribution. Aircraft observations from the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in northern Alaska in April 2008 allow for identification and characterization of both aerosol and trace gas pollutants, which are then compared with cloud microphysical properties. Consistent with previous studies, we find that the concentration of precipitating ice particles (> 400 mu m) is correlated with the concentration of large droplets (> 30 mu m). We are further able to link the observed microphysical conditions to aerosol pollution, originating mainly from long range transport of biomass burning emissions. The case studies demonstrate that polluted mixed-phase clouds have narrower droplet size distributions and contain 1-2 orders of magnitude fewer precipitating ice particles than clean clouds at the same temperature. This suggests an aerosol indirect effect leading to greater cloud lifetime, greater cloud emissivity, and reduced precipitation. This result is opposite to the glaciation indirect effect, whereby polluted clouds are expected to precipitate more readily due to an increase in the concentration of particles acting as ice nuclei.
引用
收藏
页码:8003 / 8015
页数:13
相关论文
共 50 条
  • [1] The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
    Solomon, A.
    Feingold, G.
    Shupe, M. D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (18) : 10631 - 10643
  • [2] Resilience of persistent Arctic mixed-phase clouds
    Morrison, Hugh
    de Boer, Gijs
    Feingold, Graham
    Harrington, Jerry
    Shupe, Matthew D.
    Sulia, Kara
    NATURE GEOSCIENCE, 2012, 5 (01) : 11 - 17
  • [3] Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds
    Paukert, M.
    Hoose, C.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (14) : 9073 - 9092
  • [4] The Effect of Ice Nuclei Efficiency on Arctic Mixed-Phase Clouds from Large-Eddy Simulations
    Fu, Shizuo
    Xue, Huiwen
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2017, 74 (12) : 3901 - 3913
  • [5] Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system
    Cheng, Chao-Tzuen
    Wang, Wei-Chyung
    Chen, Jen-Ping
    ATMOSPHERIC RESEARCH, 2010, 96 (2-3) : 461 - 476
  • [6] Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
    Lee, Junghwa
    Seifert, Patric
    Hashino, Tempei
    Maahn, Maximilian
    Senf, Fabian
    Knoth, Oswald
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (10) : 5737 - 5756
  • [7] Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds
    Norgren, Matthew S.
    de Boer, Gijs
    Shupe, Matthew D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (18) : 13345 - 13361
  • [8] Conditions favorable for secondary ice production in Arctic mixed-phase clouds
    Pasquier, Julie Therese
    Henneberger, Jan
    Ramelli, Fabiola
    Lauber, Annika
    David, Robert Oscar
    Wieder, Joerg
    Carlsen, Tim
    Gierens, Rosa
    Maturilli, Marion
    Lohmann, Ulrike
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (23) : 15579 - 15601
  • [9] The impact of microphysical parameters, ice nucleation mode, and habit growth on the ice/liquid partitioning in mixed-phase Arctic clouds
    Ervens, Barbara
    Feingold, Graham
    Sulia, Kara
    Harrington, Jerry
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [10] Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms
    Sednev, I.
    Menon, S.
    McFarquhar, G.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 4747 - 4773