Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction

被引:18
作者
Usova, EIena I. [1 ]
Alieva, Asiiat S. [1 ]
Yakovlev, Alexey N. [1 ]
Alieva, Madina S. [1 ]
Prokhorikhin, Alexey A. [1 ]
Konradi, Alexandra O. [1 ]
Shlyakhto, Evgeny V. [1 ]
Magni, Paolo [2 ,3 ]
Catapano, Alberico L. [2 ,3 ]
Baragetti, Andrea [2 ,3 ]
机构
[1] Almazov Natl Med Res Ctr, St Petersburg 197341, Russia
[2] Univ Milan, Dept Pharmacol & BioMol Sci, I-20133 Milan, Italy
[3] IRCCS Multimedica Hosp, Sesto San Giovanni, I-20099 Milan, Italy
关键词
multi-omics; risk prediction; cardiovascular disease; precision medicine; CORONARY-ARTERY-DISEASE; FAMILIAL HYPERCHOLESTEROLEMIA; TELOMERE LENGTH; ASSOCIATION ANALYSIS; LOCI; IDENTIFICATION; HEMATOPOIESIS; PREVALENCE; EXPRESSION; NETWORKS;
D O I
10.3390/biom11111597
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetics and environmental and lifestyle factors deeply affect cardiovascular diseases, with atherosclerosis as the etiopathological factor (ACVD) and their early recognition can significantly contribute to an efficient prevention and treatment of the disease. Due to the vast number of these factors, only the novel "omic " approaches are surmised. In addition to genomics, which extended the effective therapeutic potential for complex and rarer diseases, the use of "omics " presents a step-forward that can be harnessed for more accurate ACVD prediction and risk assessment in larger populations. The analysis of these data by artificial intelligence (AI)/machine learning (ML) strategies makes is possible to decipher the large amount of data that derives from such techniques, in order to provide an unbiased assessment of pathophysiological correlations and to develop a better understanding of the molecular background of ACVD. The predictive models implementing data from these "omics ", are based on consolidated AI best practices for classical ML and deep learning paradigms that employ methods (e.g., Integrative Network Fusion method, using an AI/ML supervised strategy and cross-validation) to validate the reproducibility of the results. Here, we highlight the proposed integrated approach for the prediction and diagnosis of ACVD with the presentation of the key elements of a joint scientific project of the University of Milan and the Almazov National Medical Research Centre.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato
    Li, Dawei
    Geng, Zedong
    Xia, Shixuan
    Feng, Hui
    Jiang, Xiuhan
    Du, Hui
    Wang, Pei
    Lian, Qun
    Zhu, Yanhui
    Jia, Yuxin
    Zhou, Yao
    Wu, Yaoyao
    Huang, Chenglong
    Zhu, Guangtao
    Shang, Yi
    Li, Huihui
    Staedler, Thomas
    Yang, Wanneng
    Huang, Sanwen
    Zhang, Chunzhi
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] Using machine learning approaches for multi-omics data analysis: A review
    Reel, Parminder S.
    Reel, Smarti
    Pearson, Ewan
    Trucco, Emanuele
    Jefferson, Emily
    [J]. BIOTECHNOLOGY ADVANCES, 2021, 49
  • [23] Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions
    Dareng, Eileen O.
    Coetzee, Simon G.
    Tyrer, Jonathan P.
    Peng, Pei-Chen
    Rosenow, Will
    Chen, Stephanie
    Davis, Brian D.
    Dezem, Felipe Segato
    Seo, Ji-Heui
    Nameki, Robbin
    Reyes, Alberto L.
    Aben, Katja K. H.
    Anton-Culver, Hoda
    Antonenkova, Natalia N.
    Aravantinos, Gerasimos
    Bandera, Elisa V.
    Freeman, Laura E. Beane
    Beckmann, Matthias W.
    Beeghly-Fadiel, Alicia
    Benitez, Javier
    Bernardini, Marcus Q.
    Bjorge, Line
    Black, Amanda
    Bogdanova, Natalia V.
    Bolton, Kelly L.
    Brenton, James D.
    Budzilowska, Agnieszka
    Butzow, Ralf
    Cai, Hui
    Campbell, Ian
    Cannioto, Rikki
    Chang-Claude, Jenny
    Chanock, Stephen J.
    Chen, Kexin
    Chenevix-Trench, Georgia
    Chiew, Yoke-Eng
    Cook, Linda S.
    DeFazio, Anna
    Dennis, Joe
    Doherty, Jennifer A.
    Doerk, Thilo
    du Bois, Andreas
    Duerst, Matthias
    Eccles, Diana M.
    Ene, Gabrielle
    Fasching, Peter A.
    Flanagan, James M.
    Fortner, Renee T.
    Fostira, Florentia
    Gentry-Maharaj, Aleksandra
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2024, 111 (06) : 1061 - 1083
  • [24] A multi-omics analysis for the prediction of neurocognitive disorders risk among the elderly in Macao
    Han, Yan
    Quan, Xingping
    Chuang, Yaochen
    Liang, Qiaoxing
    Li, Yang
    Yuan, Zhen
    Bian, Ying
    Wei, Lai
    Wang, Ji
    Zhao, Yonghua
    [J]. CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (06):
  • [25] Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis
    Bao, Jingxuan
    Chang, Changgee
    Zhang, Qiyiwen
    Saykin, Andrew J.
    Shen, Li
    Long, Qi
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [26] Advances in applying of multi-omics approaches in the research of systemic lupus erythematosus Summarization of biomarkers from different omics, and discussion of challenges and advances in integrative analysis of multi-omics in SLE studies
    Song, Wencong
    Tang, Donge
    Chen, Deheng
    Zheng, Fengping
    Huang, Shaoying
    Xu, Yong
    Yu, Haiyan
    He, Jingquan
    Hong, Xiaoping
    Yin, Lianghong
    Liu, Dongzhou
    Dai, Weier
    Dai, Yong
    [J]. INTERNATIONAL REVIEWS OF IMMUNOLOGY, 2020, 39 (04) : 163 - 173
  • [27] Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks
    Ming Zhang
    Xiaoyang Wang
    Nan Yang
    Xu Zhu
    Zequn Lu
    Yimin Cai
    Bin Li
    Ying Zhu
    Xiangpan Li
    Yongchang Wei
    Shaokai Zhang
    Jianbo Tian
    Xiaoping Miao
    [J]. Science China Life Sciences, 2024, 67 : 132 - 148
  • [28] Integrative Multi-Omics Data-Driven approach for Metastasis prediction in Cancer
    Fernandez-Lozano, Carlos
    Linares Blanco, Jose
    Gestal, Marcos
    Dorado, Julian
    Pazos, Alejandro
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE, E-LEARNING AND INFORMATION SYSTEMS 2018 (DATA'18), 2018,
  • [29] Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease
    Lucena-Padros, Helena
    Bravo-Gil, Nereida
    Tous, Cristina
    Rojano, Elena
    Seoane-Zonjic, Pedro
    Fernandez, Raquel Maria
    Ranea, Juan A. G.
    Antinolo, Guillermo
    Borrego, Salud
    [J]. BIOMOLECULES, 2024, 14 (02)
  • [30] Integrative Multi-Omics Analysis Reveals Candidate Biomarkers for Oral Squamous Cell Carcinoma
    Wan, Zhengqing
    Xiong, Haofeng
    Tan, Xian
    Su, Tong
    Xia, Kun
    Wang, Danling
    [J]. FRONTIERS IN ONCOLOGY, 2022, 11