Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction

被引:18
|
作者
Usova, EIena I. [1 ]
Alieva, Asiiat S. [1 ]
Yakovlev, Alexey N. [1 ]
Alieva, Madina S. [1 ]
Prokhorikhin, Alexey A. [1 ]
Konradi, Alexandra O. [1 ]
Shlyakhto, Evgeny V. [1 ]
Magni, Paolo [2 ,3 ]
Catapano, Alberico L. [2 ,3 ]
Baragetti, Andrea [2 ,3 ]
机构
[1] Almazov Natl Med Res Ctr, St Petersburg 197341, Russia
[2] Univ Milan, Dept Pharmacol & BioMol Sci, I-20133 Milan, Italy
[3] IRCCS Multimedica Hosp, Sesto San Giovanni, I-20099 Milan, Italy
关键词
multi-omics; risk prediction; cardiovascular disease; precision medicine; CORONARY-ARTERY-DISEASE; FAMILIAL HYPERCHOLESTEROLEMIA; TELOMERE LENGTH; ASSOCIATION ANALYSIS; LOCI; IDENTIFICATION; HEMATOPOIESIS; PREVALENCE; EXPRESSION; NETWORKS;
D O I
10.3390/biom11111597
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetics and environmental and lifestyle factors deeply affect cardiovascular diseases, with atherosclerosis as the etiopathological factor (ACVD) and their early recognition can significantly contribute to an efficient prevention and treatment of the disease. Due to the vast number of these factors, only the novel "omic " approaches are surmised. In addition to genomics, which extended the effective therapeutic potential for complex and rarer diseases, the use of "omics " presents a step-forward that can be harnessed for more accurate ACVD prediction and risk assessment in larger populations. The analysis of these data by artificial intelligence (AI)/machine learning (ML) strategies makes is possible to decipher the large amount of data that derives from such techniques, in order to provide an unbiased assessment of pathophysiological correlations and to develop a better understanding of the molecular background of ACVD. The predictive models implementing data from these "omics ", are based on consolidated AI best practices for classical ML and deep learning paradigms that employ methods (e.g., Integrative Network Fusion method, using an AI/ML supervised strategy and cross-validation) to validate the reproducibility of the results. Here, we highlight the proposed integrated approach for the prediction and diagnosis of ACVD with the presentation of the key elements of a joint scientific project of the University of Milan and the Almazov National Medical Research Centre.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Computational approaches for network-based integrative multi-omics analysis
    Agamah, Francis E.
    Bayjanov, Jumamurat R.
    Niehues, Anna
    Njoku, Kelechi F.
    Skelton, Michelle
    Mazandu, Gaston K.
    Ederveen, Thomas H. A.
    Mulder, Nicola
    Chimusa, Emile R.
    't Hoen, Peter A. C.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [2] Multi-Omics Approaches in Genetic Epidemiology Studies
    Kechris, Katerina
    GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 644 - 644
  • [3] A Customizable Analysis Flow in Integrative Multi-Omics
    Lancaster, Samuel M.
    Sanghi, Akshay
    Wu, Si
    Snyder, Michael P.
    BIOMOLECULES, 2020, 10 (12) : 1 - 15
  • [4] Multi-OMICS: a critical technical perspective on integrative lipidomics approaches
    Kopczynski, Dominik
    Coman, Cristina
    Zahedi, Rene P.
    Lorenz, Kristina
    Sickmann, Albert
    Ahrends, Robert
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2017, 1862 (08): : 808 - 811
  • [5] Editorial: Integrative Approaches to Analyze Cancer Based on Multi-Omics
    Shen, Sipeng
    FRONTIERS IN GENETICS, 2022, 13
  • [6] Multi-omics approaches for revealing the complexity of cardiovascular disease
    Doran, Stephen
    Arif, Muhammad
    Lam, Simon
    Bayraktar, Abdulahad
    Turkez, Hasan
    Uhlen, Mathias
    Boren, Jan
    Mardinoglu, Adil
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [7] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Hagenbeek, Fiona A.
    van Dongen, Jenny
    Pool, Rene
    Roetman, Peter J.
    Harms, Amy C.
    Hottenga, Jouke Jan
    Kluft, Cornelis
    Colins, Olivier F.
    van Beijsterveldt, Catharina E. M.
    Fanos, Vassilios
    Ehli, Erik A.
    Hankemeier, Thomas
    Vermeiren, Robert R. J. M.
    Bartels, Meike
    Dejean, Sebastien
    Boomsma, Dorret, I
    BEHAVIOR GENETICS, 2023, 53 (02) : 101 - 117
  • [8] MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis
    Maes, Alexandre
    Martinez, Xavier
    Druart, Karen
    Laurent, Benoist
    Guegan, Sean
    Marchand, Christophe H.
    Lemaire, Stephane D.
    Baaden, Marc
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2018, 15 (02)
  • [9] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Fiona A. Hagenbeek
    Jenny van Dongen
    René Pool
    Peter J. Roetman
    Amy C. Harms
    Jouke Jan Hottenga
    Cornelis Kluft
    Olivier F. Colins
    Catharina E. M. van Beijsterveldt
    Vassilios Fanos
    Erik A. Ehli
    Thomas Hankemeier
    Robert R. J. M. Vermeiren
    Meike Bartels
    Sébastien Déjean
    Dorret I. Boomsma
    Behavior Genetics, 2023, 53 : 101 - 117
  • [10] Integrative analysis of multi-omics data for liquid biopsy
    Chen, Geng
    Zhang, Jing
    Fu, Qiaoting
    Taly, Valerie
    Tan, Fei
    BRITISH JOURNAL OF CANCER, 2023, 128 (04) : 505 - 518