Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages

被引:21
|
作者
Isla-Magrane, Helena [1 ]
Veiga, Anna [2 ]
Garcia-Arumi, Jose [1 ,3 ,4 ]
Duarri, Anna [1 ]
机构
[1] Vall dHebron Inst Recerca VHIR, Ophthalmol Res Grp, Vall dHebron Barcelona Hosp Campus, Passeig Vall dHebron 119-129, Barcelona 08035, Spain
[2] Regenerat Med Program IDIBELL, Barcelona, Spain
[3] Vall dHebron Hosp Univ, Dept Ophthalmol, Barcelona, Spain
[4] Univ Autanoma Barcelona, Dept Ophthalmol, Bellaterra, Spain
关键词
Stem cells; Ocular precursor cells; Ocular organoids; Retina; Cornea; RPE; Retinal pigment epithelium; HOMEOBOX GENE; GENERATION; SPECIFICATION; MUTATIONS; EYE; ANOPHTHALMIA; CONJUNCTIVAL; INHIBITION; SPHEROIDS; INDUCTION;
D O I
10.1186/s13287-021-02651-9
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background: Recently, great efforts have been made to design protocols for obtaining ocular cells from human stem cells to model diseases or for regenerative purposes. Current protocols generally focus on isolating retinal cells, retinal pigment epithelium (RPE), or corneal cells and fail to recapitulate the complexity of the tissue during eye development. Here, the generation of more advanced in vitro multiocular organoids from human induced pluripotent stem cells (hiPSCs) is demonstrated. Methods: A 2-step method was established to first obtain self-organized multizone ocular progenitor cells (mzOPCs) from 2D hiPSC cultures within three weeks. Then, after the cells were manually isolated and grown in suspension, 3D multiocular organoids were generated to model important cellular features of developing eyes. Results: In the 2D culture, self-formed mzOPCs spanned the neuroectoderm, surface ectoderm, neural crest, and RPE, mimicking early stages of eye development. After lifting, mzOPCs developed into different 3D multiocular organoids composed of multiple cell lineages including RPE, retina, and cornea, and interactions between the different cell types and regions of the eye system were observed. Within these organoids, the retinal regions exhibited correct layering and contained all major retinal cell subtypes as well as retinal morphological cues, whereas the corneal regions closely resembled the transparent ocular-surface epithelium and contained of corneal, limbal, and conjunctival epithelial cells. The arrangement of RPE cells also formed organoids composed of polarized pigmented epithelial cells at the surface that were completely filled with collagen matrix. Conclusions: This approach clearly demonstrated the advantages of the combined 2D-3D construction tissue model as it provided a more ocular native-like cellular environment than that of previous models. In this complex preparations, multiocular organoids may be used to model the crosstalk between different cell types in eye development and disease.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium
    Vitillo, Loriana
    Tovell, Victoria E.
    Coffey, Pete
    CURRENT EYE RESEARCH, 2020, 45 (03) : 361 - 371
  • [32] Generation of retinal cells from mouse and human induced pluripotent stem cells
    Hirami, Yasuhiko
    Osakada, Fumitaka
    Takahashi, Kazutoshi
    Okita, Keisuke
    Yamanaka, Shinya
    Ikeda, Hanako
    Yoshimura, Nagahisa
    Takahashi, Masayo
    NEUROSCIENCE LETTERS, 2009, 458 (03) : 126 - 131
  • [33] Nonxenogeneic Growth and Retinal Differentiation of Human Induced Pluripotent Stem Cells
    Sridhar, Akshayalakshmi
    Steward, Melissa M.
    Meyer, Jason S.
    STEM CELLS TRANSLATIONAL MEDICINE, 2013, 2 (04) : 255 - 264
  • [34] Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application
    Kamao, Hiroyuki
    Mandai, Michiko
    Okamoto, Satoshi
    Sakai, Noriko
    Suga, Akiko
    Sugita, Sunao
    Kiryu, Junichi
    Takahashi, Masayo
    STEM CELL REPORTS, 2014, 2 (02): : 205 - 218
  • [35] Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells
    Seah, Ivan
    Goh, Debbie
    Banerjee, Animesh
    Su, Xinyi
    FRONTIERS IN MEDICINE, 2024, 11
  • [36] Influence of hypoxia on retinal progenitor and ganglion cells in human induced pluripotent stem cell-derived retinal organoids
    Du, Jin-Lin
    Gao, Li-Xiong
    Wang, Tao
    Ye, Zi
    Li, Hong-Yu
    Li, Wen
    Zeng, Quan
    Xi, Jia-Fei
    Yue, Wen
    Li, Zhao-Hui
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2023, 16 (10) : 1574 - 1581
  • [37] MicroRNA Expression Profiles of Human iPS Cells, Retinal Pigment Epithelium Derived From iPS, and Fetal Retinal Pigment Epithelium
    Greene, Whitney A.
    Muniz, Alberto
    Plamper, Mark L.
    Kaini, Ramesh R.
    Wang, Heuy-Ching
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (88):
  • [38] Advances in the Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells
    Ohlemacher, Sarah K.
    Langer, Kirstin B.
    Fligor, Clarisse M.
    Feder, Elyse M.
    Edler, Michael C.
    Meyer, Jason S.
    PLURIPOTENT STEM CELLS IN EYE DISEASE THERAPY, 2019, 1186 : 121 - 140
  • [39] Defined Conditions for Differentiation of Functional Retinal Ganglion Cells From Human Pluripotent Stem Cells
    Lee, Junwon
    Choi, Sang-Hwi
    Kim, Young-Beom
    Jun, Ikhyun
    Sung, Jin Jea
    Lee, Dongjin R.
    Kim, Yang In
    Cho, Myung Soo
    Byeon, Suk Ho
    Kim, Dae-Sung
    Kim, Dong-Wook
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (08) : 3531 - 3542
  • [40] Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis
    Voelkner, Manuela
    Zschaetzsch, Marlen
    Rostovskaya, Maria
    Overall, Rupert W.
    Busskamp, Volker
    Anastassiadis, Konstantinos
    Karl, Mike O.
    STEM CELL REPORTS, 2016, 6 (04): : 525 - 538