The exterior Dirichlet problem for the biharmonic equation: Solutions with bounded Dirichlet integral

被引:23
作者
Matevosyan, OA [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
biharmonic equation; exterior Dirichlet problem; Sobolev space; finite-energy solution; Dirichlet integral;
D O I
10.1023/A:1012347929056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the unique solvability of the Dirichlet problem for the biharmonic equation in the exterior of a compact set under the assumption that a generalized solution Of this problem has a bounded Dirichlet integral with weight \x \ (a). Depending on the value of the parameter a, we prove uniqueness theorems or present exact formulas for the dimension of the solution space of the Dirichlet problem.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 11 条
[1]  
GILLBARG D, 1977, ELLIPTIC PARTIAL DIF
[2]  
Kon'kov A.A., 1993, MAT SBORNIK, V184, P23
[3]   BOUNDARY-VALUE-PROBLEMS FOR THE SYSTEM OF ELASTICITY THEORY IN UNBOUNDED-DOMAINS - KORNS INEQUALITIES [J].
KONDRATEV, VA ;
OLEINIK, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) :65-119
[4]  
KONDRATEV VA, 1984, USP MAT NAUK, V39, P165
[5]  
Kondratiev V., 1967, T MOSKOV MATEM OBSHC, V16, P209
[6]  
KONDRATIEV VA, 1987, ARCH RATION MECH AN, V99, P75, DOI 10.1007/BF00251392
[7]  
Kudryavtsev L.D, 1967, IZV AKAD NAUK SSSR M, V31, P354
[8]  
Matevosyan O.A, 1998, DIFF URAVN, V34, P806
[9]  
MATEVOSYAN OA, 1993, USP MAT NAUK, V48, P159
[10]  
Mikhlin SG, 1977, Linear Partial Differential Equations