Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries

被引:18
|
作者
Zhai, Lei [1 ]
Zhang, Weiwei [1 ]
Gong, Hongyu [2 ]
Li, Yong [2 ]
Gao, Meng [2 ]
Zhang, Xiaoyu [1 ]
Li, Dongwei [2 ]
Zhou, Yanli [1 ]
Dong, Caifu [1 ]
Liu, Wenbao [1 ]
Jiang, Fuyi [1 ]
Sun, Jianchao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Qilu Univ Technol, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-solid electrolyte; PVDF-HFP; LATP; Li metal; Ionic conductivity; CATHODE;
D O I
10.1016/j.surfin.2022.102299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quasi-solid electrolyte based on Poly(vinylidene fluoride-co-hexafluoropropylene) has drawn great interest owing to good wettability and compatibility with lithium metal anode. However, the low ionic conductivity and lithium-ion transfer number limit the practical application of Poly(vinylidene fluoride-co-hexafluoropropylene). Herein, quasi-solid electrolyte is prepared by adding NASICON-type lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)(3) to Poly(vinylidene fluoride-co-hexafluoropropylene). The Li1.3Al0.3Ti1.7(PO4)(3) not only reduces the crystallinity of the polymer, but also participates in the conduction process of Li+. Through the synergistic effect of Li1.3Al0.3Ti1.7(PO4)(3) and Poly(vinylidene fluoride-co-hexafluoropropylene), the quasi-solid polymer electrolyte has a high ionic conductivity (3.64 x 10(-3 )S cm(-1)) at room temperature and large lithium-ion transfer number (0.64). The symmetric cell exhibits a small overpotential (18 mV) as well as a stable cycle (3000 h) at 0.2 mA cm(-2 )with areal capacity of 0.2 mAh cm(-2 ). The full cell with LiFePO4 cathode keeps a discharge capacity of 143.4 mAh g(-1) after 600 cycles with capacity retention of 94.7%, and also performs good electrochemical performance with high voltage cathode (LiNi0.85Mn0.1Co0.05O2). Furthermore, the pouch cell assembled by quasi -solid polymer electrolyte have good flexibility, which can be used normally after folding and shearing. Our work supplies a feasible solution for the design of quasi-solid lithium metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Composite Hybrid Quasi-Solid Electrolyte for High-Energy Lithium Metal Batteries
    Zhai, Yanfang
    Yang, Guanming
    Zeng, Zhong
    Song, Shufeng
    Li, Shuai
    Hu, Ning
    Tang, Weiping
    Wen, Zhaoyin
    Lu, Li
    Molenda, Janina
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (08): : 7973 - 7982
  • [42] In Situ Fabricated Non-Flammable Quasi-Solid Electrolytes for Li-Metal Batteries
    Zhao, Jiwei
    Li, Mengjie
    Su, Hai
    Liu, Yuansheng
    Bai, Panxing
    Liu, Hang
    Ma, Lanhua
    Li, Weiyang
    Sun, Jie
    Xu, Yunhua
    SMALL METHODS, 2023, 7 (09)
  • [43] Multifunctional quasi-solid state electrolytes based on "reverse" plant cell structure for high-performance lithium metal batteries
    Liu, Zixin
    Wu, Feng
    Zhang, Xixue
    Sun, Xuan
    Yang, Binbin
    Sun, Wen
    Chen, Renjie
    Li, Li
    ENERGY STORAGE MATERIALS, 2024, 72
  • [44] 3D printable solid and quasi-solid electrolytes for advanced batteries
    Ben-Barak, Ido
    Ragones, Heftsi
    Golodnitsky, Diana
    ELECTROCHEMICAL SCIENCE ADVANCES, 2022, 2 (06):
  • [45] Quasi-Solid Aqueous Electrolytes for Low-Cost Sustainable Alkali-Metal Batteries
    Yi, Xianhui
    Feng, Yanhong
    Rao, Apparao M. M.
    Zhou, Jiang
    Wang, Chengxin
    Lu, Bingan
    ADVANCED MATERIALS, 2023, 35 (29)
  • [46] Regulation of Interphase Layer by Flexible Quasi-Solid Block Polymer Electrolyte to Achieve Highly Stable Lithium Metal Batteries
    Chai, Simin
    Chang, Zhi
    Zhong, Yue
    He, Qiong
    Wang, Yijiang
    Wan, Yuanlang
    Feng, MingYang
    Hu, Yingzhu
    Li, WeiHang
    Wei, Weifeng
    Pan, Anqiang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (27)
  • [47] A reflection on polymer electrolytes for solid-state lithium metal batteries
    Song, Ziyu
    Chen, Fangfang
    Martinez-Ibanez, Maria
    Feng, Wenfang
    Forsyth, Maria
    Zhou, Zhibin
    Armand, Michel
    Zhang, Heng
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] A reflection on polymer electrolytes for solid-state lithium metal batteries
    Ziyu Song
    Fangfang Chen
    Maria Martinez-Ibañez
    Wenfang Feng
    Maria Forsyth
    Zhibin Zhou
    Michel Armand
    Heng Zhang
    Nature Communications, 14
  • [49] Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
    Kang, Junbao
    Deng, Nanping
    Cheng, Bowen
    Kang, Weimin
    JOURNAL OF ENERGY CHEMISTRY, 2024, 92 : 26 - 42
  • [50] Liquid crystals as additives in solid polymer electrolytes for lithium metal batteries
    Isaac Álvarez Moisés
    Alessandro Innocenti
    Mathilde Somville
    Benoît Notredame
    Stefano Passerini
    Jean-François Gohy
    MRS Advances, 2023, 8 : 797 - 802