Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries

被引:20
作者
Zhai, Lei [1 ]
Zhang, Weiwei [1 ]
Gong, Hongyu [2 ]
Li, Yong [2 ]
Gao, Meng [2 ]
Zhang, Xiaoyu [1 ]
Li, Dongwei [2 ]
Zhou, Yanli [1 ]
Dong, Caifu [1 ]
Liu, Wenbao [1 ]
Jiang, Fuyi [1 ]
Sun, Jianchao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Qilu Univ Technol, Adv Mat Inst, Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-solid electrolyte; PVDF-HFP; LATP; Li metal; Ionic conductivity; CATHODE;
D O I
10.1016/j.surfin.2022.102299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quasi-solid electrolyte based on Poly(vinylidene fluoride-co-hexafluoropropylene) has drawn great interest owing to good wettability and compatibility with lithium metal anode. However, the low ionic conductivity and lithium-ion transfer number limit the practical application of Poly(vinylidene fluoride-co-hexafluoropropylene). Herein, quasi-solid electrolyte is prepared by adding NASICON-type lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)(3) to Poly(vinylidene fluoride-co-hexafluoropropylene). The Li1.3Al0.3Ti1.7(PO4)(3) not only reduces the crystallinity of the polymer, but also participates in the conduction process of Li+. Through the synergistic effect of Li1.3Al0.3Ti1.7(PO4)(3) and Poly(vinylidene fluoride-co-hexafluoropropylene), the quasi-solid polymer electrolyte has a high ionic conductivity (3.64 x 10(-3 )S cm(-1)) at room temperature and large lithium-ion transfer number (0.64). The symmetric cell exhibits a small overpotential (18 mV) as well as a stable cycle (3000 h) at 0.2 mA cm(-2 )with areal capacity of 0.2 mAh cm(-2 ). The full cell with LiFePO4 cathode keeps a discharge capacity of 143.4 mAh g(-1) after 600 cycles with capacity retention of 94.7%, and also performs good electrochemical performance with high voltage cathode (LiNi0.85Mn0.1Co0.05O2). Furthermore, the pouch cell assembled by quasi -solid polymer electrolyte have good flexibility, which can be used normally after folding and shearing. Our work supplies a feasible solution for the design of quasi-solid lithium metal batteries.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries [J].
Chen, Guanghai ;
Zhang, Kun ;
Liu, Yiran ;
Ye, Lin ;
Gao, Yongsheng ;
Lin, Weiran ;
Xu, Huajie ;
Wang, Xinran ;
Bai, Ying ;
Wu, Chuan .
CHEMICAL ENGINEERING JOURNAL, 2020, 401
[2]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[3]   Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries [J].
Chen, Minjian ;
Ma, Cheng ;
Ding, Zhengping ;
Zhou, Liangjun ;
Chen, Libao ;
Gao, Peng ;
Wei, Weifeng .
ACS ENERGY LETTERS, 2021, 6 (04) :1280-1289
[4]   Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte [J].
Dai, Lijing ;
Wang, Jing ;
Shi, Zhongxiang ;
Yu, Lina ;
Shi, Jun .
CERAMICS INTERNATIONAL, 2021, 47 (08) :11662-11667
[5]   Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites [J].
Defebvin, Juliette ;
Barrau, Sophie ;
Lyskawa, Joel ;
Woisel, Patrice ;
Lefebvre, Jean-Marc .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 147 :16-21
[6]   Low-operating temperature quasi-solid-state potassium-ion battery based on commercial materials [J].
Du, Guangyuan ;
Tao, Mengli ;
Liu, Dingyu ;
Aslam, Muhammad Kashif ;
Qi, Yuruo ;
Jiang, Jian ;
Li, Yutao ;
Bao, Shu-juan ;
Xu, Maowen .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 582 :932-939
[7]   Conduction mechanism in polymeric membranes based on PEO or PVdF-HFP and containing a piperidinium ionic liquid [J].
Elamin, Khalid ;
Shojaatalhosseini, Mansoureh ;
Danyliv, Olesia ;
Martinelli, Anna ;
Swenson, Jan .
ELECTROCHIMICA ACTA, 2019, 299 :979-986
[8]   Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries [J].
Gao, Shizhe ;
Ju, Peng ;
Liu, Ziquan ;
Zhai, Lei ;
Liu, Wenbao ;
Zhang, Xiaoyu ;
Zhou, Yanli ;
Dong, Caifu ;
Jiang, Fuyi ;
Sun, Jianchao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 69 :356-362
[9]   Poly(vinylidene fluoride)-polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries [J].
Gopalan, Anantha Iyengar ;
Lee, Kwang-Pill ;
Manesh, Kalayil Manian ;
Santhosh, Padmanabhan .
JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) :422-428
[10]   Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries [J].
Guo, Jianqiang ;
Chen, Yapeng ;
Xiao, Yuanbin ;
Xi, Chenpeng ;
Xu, Gui ;
Li, Borong ;
Yang, Chengkai ;
Yu, Yan .
CHEMICAL ENGINEERING JOURNAL, 2021, 422