NEONATAL SEIZURE DETECTION USING BLIND MULTICHANNEL INFORMATION FUSION

被引:0
|
作者
Li, Huaying [1 ]
Jeremic, Aleksandar [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
来源
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2011年
关键词
neonatal seizure detection; biomedical signal processing; EEG;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Seizure is the result of excessive electrical discharges of neurons, which usually develops synchronously and happens suddenly in the central nervous system. Clinically, it is difficult for physician to identify neonatal seizures visually, while EEG seizures can be recognized by the trained experts. By extending our previous results on multichannel information fusion, we propose an automated distributed detection system consisting of the existing detectors and a fusion center to detect the seizure activities in the newborn EEG. The advantage of this proposed technique is that it does not require any priori knowledge of the hypotheses and the detector performances, which are often unknown in real applications. Therefore, this proposed technique has the potential to improve the performances of the existing neonatal seizure detectors.
引用
收藏
页码:649 / 652
页数:4
相关论文
共 50 条
  • [31] Using trend templates in a neonatal seizure algorithm improves detection of short seizures in a foetal ovine model
    Zwanenburg, Alex
    Andriessen, Peter
    Jellema, Reint K.
    Niemarkt, Hendrik J.
    Wolfs, Tim G. A. M.
    Kramer, Boris W.
    Delhaas, Tammo
    PHYSIOLOGICAL MEASUREMENT, 2015, 36 (03) : 369 - 384
  • [32] Fusion Algorithm for Imbalanced EEG Data Processing in Seizure Detection
    Jiang, Zhen
    Zhao, Wenshan
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2021, 91 : 207 - 211
  • [33] Machine learning based intelligent automated neonatal epileptic seizure detection
    Elakkiya, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 8847 - 8855
  • [34] EEG Feature Pre-processing for Neonatal Epileptic Seizure Detection
    J. G. Bogaarts
    E. D. Gommer
    D. M. W. Hilkman
    V. H. J. M. van Kranen-Mastenbroek
    J. P. H. Reulen
    Annals of Biomedical Engineering, 2014, 42 : 2360 - 2368
  • [35] ROBUST NEONATAL EEG SEIZURE DETECTION THROUGH ADAPTIVE BACKGROUND MODELING
    Temko, Andriy
    Boylan, Geraldine
    Marnane, William
    Lightbody, Gordon
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (04)
  • [36] Toward a Personalized Real-Time Diagnosis in Neonatal Seizure Detection
    Temko, Andriy
    Sarkar, Achintya Kr.
    Boylan, Geraldine B.
    Mathieson, Sean
    Marnane, William P.
    Lightbody, Gordon
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2017, 5
  • [37] Lagged Correlogram Patterns-based Seizure Detection Algorithm using Optimized HMM Feature Fusion
    Behnam, Morteza
    Pourghassem, Hossein
    2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
  • [38] EEG Feature Pre-processing for Neonatal Epileptic Seizure Detection
    Bogaarts, J. G.
    Gommer, E. D.
    Hilkman, D. M. W.
    van Kranen-Mastenbroek, V. H. J. M.
    Reulen, J. P. H.
    ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (11) : 2360 - 2368
  • [39] LMA-EEGNet: A Lightweight Multi-Attention Network for Neonatal Seizure Detection Using EEG signals
    Zhou, Weicheng
    Zheng, Wei
    Feng, Youbing
    Li, Xiaolong
    ELECTRONICS, 2024, 13 (12)
  • [40] Dual-Modal Information Bottleneck Network for Seizure Detection
    Wang, Jiale
    Ge, Xinting
    Shi, Yunfeng
    Sun, Mengxue
    Gong, Qingtao
    Wang, Haipeng
    Huang, Wenhui
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (01)