NEONATAL SEIZURE DETECTION USING BLIND MULTICHANNEL INFORMATION FUSION

被引:0
|
作者
Li, Huaying [1 ]
Jeremic, Aleksandar [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON, Canada
来源
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2011年
关键词
neonatal seizure detection; biomedical signal processing; EEG;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Seizure is the result of excessive electrical discharges of neurons, which usually develops synchronously and happens suddenly in the central nervous system. Clinically, it is difficult for physician to identify neonatal seizures visually, while EEG seizures can be recognized by the trained experts. By extending our previous results on multichannel information fusion, we propose an automated distributed detection system consisting of the existing detectors and a fusion center to detect the seizure activities in the newborn EEG. The advantage of this proposed technique is that it does not require any priori knowledge of the hypotheses and the detector performances, which are often unknown in real applications. Therefore, this proposed technique has the potential to improve the performances of the existing neonatal seizure detectors.
引用
收藏
页码:649 / 652
页数:4
相关论文
共 50 条
  • [21] Neonatal Seizure Detection with Wearable Sensor System
    Chen, Hongyu
    Xue, Mengru
    Oetomo, Sidarto Bambang
    Chen, Wei
    INTELLIGENT ENVIRONMENTS 2016, 2016, 21 : 560 - 569
  • [22] Detection of Concealed Information Using Multichannel Discriminative Dictionary and Spatial Filter Learning
    Akhavan, Amir
    Moradi, Mohammad Hassan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (10) : 2616 - 2627
  • [23] A comparison of quantitative EEG features for neonatal seizure detection
    Greene, B. R.
    Faul, S.
    Marnane, W. P.
    Lightbody, G.
    Korotchikova, I.
    Boylan, G. B.
    CLINICAL NEUROPHYSIOLOGY, 2008, 119 (06) : 1248 - 1261
  • [24] Automatic Seizure Detection Incorporating Structural Information
    Hunyadi, Borbala
    De Vos, Maarten
    Signoretto, Marco
    Suykens, Johan A. K.
    Van Paesschen, Wim
    Van Huffel, Sabine
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 233 - +
  • [25] An Improved Cognitive Approach for Automated Epileptic Seizure Detection from Multichannel EEG
    Parui, Sricheta
    Basu, Deborsi
    2021 IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2022, : 68 - 71
  • [26] Automated artifact removal as preprocessing refines neonatal seizure detection
    De Vos, M.
    Deburchgraeve, W.
    Cherian, P. J.
    Matic, V.
    Swarte, R. M.
    Govaert, P.
    Visser, G. H.
    Van Huffel, S.
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (12) : 2345 - 2354
  • [27] A Comparison of Generative and Discriminative Approaches in Automated Neonatal Seizure Detection
    Thomas, E. M.
    Temko, A.
    Lightbody, G.
    Marnane, W. P.
    Boylan, G. B.
    WISP 2009: 6TH IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS, 2009, : 181 - +
  • [28] Convolutional neural networks ensemble model for neonatal seizure detection
    Tanveer, M. Asjid
    Khan, Muhammad Jawad
    Sajid, Hasan
    Naseer, Noman
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 358
  • [29] A Feature Fusion Framework and Its Application to Automatic Seizure Detection
    Huang, Chengbin
    Chen, Weiting
    Chen, Mingsong
    Yuan, Binhang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 753 - 757
  • [30] Epileptic Seizure Detection in Neonatal EEG Using a Multi-Band Graph Neural Network Model
    Tang, Lihan
    Zhao, Menglian
    APPLIED SCIENCES-BASEL, 2024, 14 (21):